基于EMD和神经网络的轮轨故障噪声诊断识别方法研究

江航;尚春阳;高瑞鹏

振动与冲击 ›› 2014, Vol. 33 ›› Issue (17) : 34-38.

PDF(896 KB)
PDF(896 KB)
振动与冲击 ›› 2014, Vol. 33 ›› Issue (17) : 34-38.
论文

基于EMD和神经网络的轮轨故障噪声诊断识别方法研究

  • 江航,尚春阳,高瑞鹏
作者信息 +

WHEEL/RAIL FAULT NOISE DIAGNOSIS METHOD BASED ON EMD AND NEURAL NETWORK

  • Jiang Hang, Shang Chunyang, Gao Ruipeng
Author information +
文章历史 +

摘要

针对轮轨故障噪声信号非平稳性特征,提出了一种基于经验模式分解(Empirical Mode Decomposition,简称EMD)与神经网络的轮轨故障诊断方法。该方法首先对轮轨噪声信号进行经验模式分解,信号分解为若干个基本模式分量(Intrinsic Mode Function,简称IMF)之和,再选取若干个包含主要故障信息的IMF分量,提取各分量的能量与峭度特征,对各分量的峭度特征综合得到多尺度峭度特征,然后将各分量能量特征与多尺度峭度特征作为神经网络的输入来识别轮轨故障的类型。对车轮扁疤、钢轨波浪磨耗和正常状态的分析结果表明,以EMD方法提取特征参数的神经网络诊断方法比以小波包方法提取特征参数的神经网络诊断方法具有更高的故障识别率。该方法能够对轮轨故障类型进行准确、有效地分类识别。

Abstract

Aiming at the non-stationary characteristics of wheel/rail fault noise signals, a wheel/rail fault diagnosis method based on Empirical Mode Decomposition(EMD) and neural network is put forward. Frist of all, wheel/rail noise signals are decomposed into several Intrinsic Mode Functions(IMF), then a number of IMFs including main fault information are selected. The energy and kurtosis features of these IMFs are extracted, and the kurtosis of these IMFs are integrated into a muti-scale kurtosis feature. Finally the energy feature of these IMFs and muti-scale kurtosis feature are served as input parameter of neural network to identify the fault pattern of wheel/rail system. The analysis results of wheel flats, rail wavy wear and normal state show that the approach of neural network diagnosis method based on EMD method extracting feature parameters has a higher fault recognition rate than that based on wavelet packet method. This method can classify and identify wheel/rail fault patterns accurately and effectively.

关键词

EMD / 神经网络 / 能量 / 峭度 / 故障诊断 / 轮轨噪声

Key words

EMD / neural network / energy / kurtosis / fault diagnosis / wheel/rail noise

引用本文

导出引用
江航;尚春阳;高瑞鹏. 基于EMD和神经网络的轮轨故障噪声诊断识别方法研究[J]. 振动与冲击, 2014, 33(17): 34-38
Jiang Hang;Shang Chunyang;Gao Ruipeng. WHEEL/RAIL FAULT NOISE DIAGNOSIS METHOD BASED ON EMD AND NEURAL NETWORK[J]. Journal of Vibration and Shock, 2014, 33(17): 34-38

PDF(896 KB)

Accesses

Citation

Detail

段落导航
相关文章

/