基于神经网络预测与小波变换的结构非线性振动参数识别

李芦钰;牛 芸

振动与冲击 ›› 2014, Vol. 33 ›› Issue (18) : 190-197.

PDF(2885 KB)
PDF(2885 KB)
振动与冲击 ›› 2014, Vol. 33 ›› Issue (18) : 190-197.
论文

基于神经网络预测与小波变换的结构非线性振动参数识别

  • 李芦钰1,牛 芸1
作者信息 +

Parameter Identification of the Structural Nonlinear vibration based on Neural Network Prediction and Wavelet Transform

  • LI Lu-yu1, NIU Yun1
Author information +
文章历史 +

摘要

首先介绍利用复Morlet小波变换进行结构非线性振动模型参数识别的原理,进而分析了因小波变换过程中的边端效应以及在采样点较少情况下复Morlet小波变换对非线性模型参数识别准确性的影响。然后提出了利用BP神经网络对非线性模型参数识别的信号进行预测延拓,并基于预测后的信号进行参数识别。最后通过对两种非线性振动模型进行数值仿真,验证了该方法能很好的提高非线性模型参数识别的准确性,并且具有一定的抗噪能力。

Abstract

In this paper, the principle of parameter identification of structure nonlinear vibration model based on the complex Morlet wavelet transform was introduced firstly. The influence of complex Morlet wavelet transform on the identification accuracy of nonlinear model parameters was analyzed under the different cases of edge-effect of wavelet transform and less sampling points. Then a BP neural network was used for the prediction extension of nonlinear vibration signals and a novel parameter identification method was proposed based on the prediction results. Finally, through the numerical simulation of two nonlinear vibration models, the method was proved to be effective in the anti-noise property and identification of nonlinear model parameters.

关键词

复Morlet小波变换 / BP神经网络 / 边端效应 / 预测延拓

Key words

Complex Morlet wavelet transform / BP neural network / Edge-effect / Prediction extension

引用本文

导出引用
李芦钰;牛 芸. 基于神经网络预测与小波变换的结构非线性振动参数识别[J]. 振动与冲击, 2014, 33(18): 190-197
LI Lu-yu;NIU Yun. Parameter Identification of the Structural Nonlinear vibration based on Neural Network Prediction and Wavelet Transform[J]. Journal of Vibration and Shock, 2014, 33(18): 190-197

PDF(2885 KB)

Accesses

Citation

Detail

段落导航
相关文章

/