基于拉普拉斯特征映射的旋转机械故障识别

李月仙;韩振南;黄宏臣;宁少慧

振动与冲击 ›› 2014, Vol. 33 ›› Issue (18) : 21-25.

PDF(1605 KB)
PDF(1605 KB)
振动与冲击 ›› 2014, Vol. 33 ›› Issue (18) : 21-25.
论文

基于拉普拉斯特征映射的旋转机械故障识别

  • 李月仙,韩振南,黄宏臣,宁少慧
作者信息 +

Fault Diagnosis of Rotating Machinery Based on Laplacian Eigenmap

  • LI Yuexian, HAN Zhennan, HUANG Hongchen, NING Shaohui

Author information +
文章历史 +

摘要

针对旋转机械故障特征信号复杂且难以提取有效特征量的问题,提出一种基于拉普拉斯特征映射算法(Laplacian Eigenmap,LE)的旋转机械故障识别方法。对旋转机械三类典型故障的监测信号进行提取和转换得到26个时域和频域特征量,在由此构建的高维特征空间中,利用LE算法进行特征融合,提取隐藏在高维特征空间中的故障本质和规律进行故障样本分类识别。利用二维或三维图像表示提取出的低维结果,以样本识别率及聚类分析中的类间距Sb和类内距Sw作为衡量指标,从模式识别的角度进行分析。结果表明:较之主元分析法(principal component analysis,PCA)和核主元分析法(kernel principal component analysis,KPCA),LE方法能够更好地从高维特征空间中提取出有效特征量表征设备运行状态,实现旋转机械典型故障的分类识别。

Abstract

For the problem that the monitor signal of rotating machinery fault is complex and hard to extract, a novel diagnosis approach based on Laplacian Eigenmap (LE) for rotating machinery fault is proposed. Extracting and converting the monitoring signal of three typical faults for rotating machinery, and getting 26 time domain and frequency domain features. In the high dimension feature space constructed by those features, using LE algorithm for feature fusion, and extracting fault essence and regularity hidden in the high dimensional feature space to identify incipient fault type. Using two-dimensional or three-dimensional image to showing the low dimensional results extracted, and taking sample recognition rate, between-class scatter and within-class scatter of cluster analysis method as measure indexes, analyzing them from the perspective of pattern recognition. The results show that: Compared with the principal component analysis (PCA) and kernel principal component analysis (KPCA), LE can better extract effective features from high-dimensional feature space to present equipment running status, and realize classification and identification of rotating machinery incipient fault.

关键词

旋转机械 / 故障诊断 / 拉普拉斯特征映射 / 特征空间的构建 / 模式识别

Key words

Rotating Machinery / Fault Diagnosis / Laplacian Eigenmaps / Constructing characteristic space / Pattern recognition

引用本文

导出引用
李月仙;韩振南;黄宏臣;宁少慧. 基于拉普拉斯特征映射的旋转机械故障识别[J]. 振动与冲击, 2014, 33(18): 21-25
LI Yuexian;HAN Zhennan;HUANG Hongchen;NING Shaohui . Fault Diagnosis of Rotating Machinery Based on Laplacian Eigenmap[J]. Journal of Vibration and Shock, 2014, 33(18): 21-25

PDF(1605 KB)

712

Accesses

0

Citation

Detail

段落导航
相关文章

/