基于改进的自适应噪声消除和故障特征阶比谱的齿轮噪源干扰下变转速滚动轴承故障诊断

王天杨;李建勇;程卫东

振动与冲击 ›› 2014, Vol. 33 ›› Issue (18) : 7-13.

PDF(1808 KB)
PDF(1808 KB)
振动与冲击 ›› 2014, Vol. 33 ›› Issue (18) : 7-13.
论文

基于改进的自适应噪声消除和故障特征阶比谱的齿轮噪源干扰下变转速滚动轴承故障诊断

  • 王天杨,李建勇,程卫东
作者信息 +

Fault diagnosis of rolling bearing under variable rotational speed and gear vibration noise based on revised ANC algorithm and FCO spectrum

  • WANG Tianyang LI Jianyong CHENG Weidong

Author information +
文章历史 +

摘要

变转速工作模式和齿轮噪源干扰是阻碍滚动轴承故障诊断的两个难题。虽然基于转速信号的角域重采样技术和基于参考信号的自适应噪声消除算法为这两个问题提供了可靠的解决路线,但是由于安装空间和成本的限制,转速信息和参考信号在实际工程中往往难以获取。为解决这一难题,本文提出了一种不依靠上述辅助设备的滚动轴承故障诊断新算法。整个算法由五部分组成:1.利用峰值啮合倍频趋势线构造参考信号对混合信号进行自适应滤波以削弱齿轮噪源对轴承故障共振频带获取的干扰;2.利用谱峭度快速算法确定由轴承故障引起的高频共振所对应的中心频率,滤波带宽和对应的尺度并直接得到最能反映轴承故障的滤波包络;3.利用短时傅里叶变换求得两次滤波后包络信号的包络时频谱并利用峰值搜索算法对瞬时故障特征频率趋势线进行提取;4.提出基于采样频率重调的重采样算法,对谱峭度滤波结果进行故障阶比域重采样;5.利用傅里叶变换求取重采样信号的故障特征阶比谱,并提出新的故障诊断策略对滚动轴承的运行状态进行判断。仿真算例和应用实例证明了该算法的有效性。

Abstract

As two main obstacles of rolling bearing diagnosis, variable rotational speed and gear vibration noise, although they can be partly solved by order tracking based on rotational speed information from tachometer and ANC algorithm using another reference sensor, the rotational speed information and reference signal is not easy to obtain in real engineering due to the design or cost reasons. To solve this problem, a new algorithm with five main steps is proposed in this paper: a) a revised ANC algorithm using newly constructed reference signal based on instantaneous dominant meshing harmonics (IDMH) trend can weaken the interruption from the gear vibration of identifying the resonance frequency from faulty rolling bearing, b) fast algorithm of spectral kurtosis (SK) method can be used to determine the center frequency, the frequency band and corresponding scale with which the filtered envelope signal which displays the rolling bearing fault extremely can be extracted, c) calculating the envelop time-frequency representation of two-filtering outcome from which the instantaneous fault characteristic frequency (IFCF) can be extracted using the peak-searching algorithm, d) proposing a new resampled algorithm based on sampling rate resetting and resample the filtered outcome into fault angle domain, e) identifying the operating state of rolling bearing using the fault characteristic order (FCO) spectrum from the resampled signal using FFT. The effectiveness of the proposed method has been validated by both simulated and experimental bearing vibration signals.

关键词

滚动轴承故障诊断 / 变转速 / 齿轮噪源 / 瞬时啮合倍频 / 瞬时故障特征频率 / 故障特征阶比谱

Key words

Bearing fault diagnosis / Time-varying rotational speed / Gear vibration noise / IDMH / IFCF / FCO spectrum

引用本文

导出引用
王天杨;李建勇;程卫东. 基于改进的自适应噪声消除和故障特征阶比谱的齿轮噪源干扰下变转速滚动轴承故障诊断[J]. 振动与冲击, 2014, 33(18): 7-13
WANG Tianyang LI Jianyong CHENG Weidong. Fault diagnosis of rolling bearing under variable rotational speed and gear vibration noise based on revised ANC algorithm and FCO spectrum[J]. Journal of Vibration and Shock, 2014, 33(18): 7-13

PDF(1808 KB)

814

Accesses

0

Citation

Detail

段落导航
相关文章

/