基于多源信息的高速列车走行部故障识别方法

朱建渠;金炜东;郑高;朱斌;

振动与冲击 ›› 2014, Vol. 33 ›› Issue (21) : 183-188.

PDF(1456 KB)
PDF(1456 KB)
振动与冲击 ›› 2014, Vol. 33 ›› Issue (21) : 183-188.
论文

基于多源信息的高速列车走行部故障识别方法

  • 朱建渠1,2,金炜东1,郑高3,朱斌1,4
作者信息 +

High-speed train running gear fault recognition based on information fusion of multi-resources

  • ZHU Jian-qu1,2, JIN Wei-dong1, ZHENG Gao3, ZHU Bin1,4
Author information +
文章历史 +

摘要

针对高速列车安全性能跟踪监测点多、监测数据量大而导致的走行部故障识别难的问题,提出了一种基于模糊证据理论的多特征、多源信息融合的走行部故障识别方法。首先根据不同传感器信息的某类特征属于不同故障模式下的隶属度间的差异来计算传感器间的信息融合度,利用融合度来确定不同传感器在融合中的权重,从而得到同类特征不同传感器间信息融合后的隶属度;然后由融合后的隶属度转化为基本概率分配函数;最后用证据理论对不同特征间信息进行融合。实验结果表明,该方法能有效地识别列车正常、空气弹簧失气、抗蛇形减震器全拆、横向减震器全拆四种情况,同时在不同速度下均取得了满意的识别率,验证了该方法的有效性。

Abstract

To solve the problem that it is difficult to identify the fault of high-speed train running gear caused by multiple detection points and large amounts of data, a running gear fault recognition method with multi-feature and multi-source information fusion is proposed based on the fuzzy evidence theory. Firstly, the information fusion degrees of sensors are obtained by calculating the difference of membership degrees which can reflect a certain feature of different sensors belonging to different fault modes. The fusion degrees are used to determine the weights of different sensors during fusion, thus the membership degrees between different sensors with similar characteristics can be obtained after information fusion. Then, the basic probability assignment functions are converted from the fused membership degrees. Finally, the information of different characteristics is fused on the basis of evidence theory. Experimental results show that four cases, including the normal, loss air of air spring, without anti-yaw shock absorber and without transverse shock absorber, can be identified effectively, and the satisfactory fault identification rates are obtained at different speeds, all these verify the validity of new method.

关键词

高速列车 / 证据理论 / 隶属度 / 信息融合 / 故障识别

Key words

high speed train / evidence theory / degree of membership / information fusion / fault recognition

引用本文

导出引用
朱建渠;金炜东;郑高;朱斌;. 基于多源信息的高速列车走行部故障识别方法[J]. 振动与冲击, 2014, 33(21): 183-188
ZHU Jian-qu;JIN Wei-dong;ZHENG Gao;ZHU Bin;. High-speed train running gear fault recognition based on information fusion of multi-resources[J]. Journal of Vibration and Shock, 2014, 33(21): 183-188

PDF(1456 KB)

Accesses

Citation

Detail

段落导航
相关文章

/