动态增殖流形学习算法在机械故障诊断中的应用

宋 涛;汤宝平;邓蕾

振动与冲击 ›› 2014, Vol. 33 ›› Issue (23) : 15-19.

PDF(1499 KB)
PDF(1499 KB)
振动与冲击 ›› 2014, Vol. 33 ›› Issue (23) : 15-19.
论文

动态增殖流形学习算法在机械故障诊断中的应用

  • 宋 涛,汤宝平,邓蕾
作者信息 +

A Dynamically Incremental Manifold Learning Algorithm and Its Application in Fault Diagnosis for Machinery

  • Song Tao, Tang Baoping, Deng Lei
Author information +
文章历史 +

摘要

针对现有的批量式流形学习算法无法利用已学习的流形结构实现新增样本的快速约简的缺点,提出增殖正交邻域保持嵌入 (Incremental Orthogonal Neighborhood Preserving Embedding,IONPE) 流形学习算法。该算法在正交邻域保持嵌入算法基础上利用分块处理思想实现新增样本子集的动态约简。从原始样本中选取部分重叠点合并至新增样本,对重叠点和新增样本子集不依赖原始样本使用正交邻域保持嵌入(ONPE)进行独立约简获取低维嵌入坐标子集,并基于重叠点坐标差值最小化原则,将新增样本低维嵌入坐标通过旋转平移缩放整合到原样本子集中。齿轮箱故障诊断案例证实了IONPE算法具有良好的增量学习能力,在继承ONPE优良聚类特性的同时有效提高了新增样本约简效率。

Abstract

The common batch manifold learning algorithms can’t achieve dimensionality reduction rapidly of additional samples with the learned manifold structure, the incremental orthogonal neighborhood preserving embedding (IONPE) manifold learning algorithm was proposed. It achieves dynamic incremental learning for the additional samples with the block processing idea based on orthogonal neighborhood preserving embedding. Firstly, select some overlapping points from the original samples and add them to the additional samples; Secondly, get the subset of low-dimensional embedding coordinates of additional samples by ONPE not depending on the original samples; Finally, based on the principle of minimizing the differences of the overlapping point coordinates, the low-dimensional embedding coordinates of the additional samples were integrated into the original samples by rotating, shifting and scaling transformation. The fault diagnosis case of the gearbox confirmed that the IONPE algorithm has good incremental learning ability. It improves the processing efficiency of the additional samples while inheriting the superior clustering performance of ONPE.

关键词

增殖流形学习 / 正交邻域保持嵌入 / 动态约简 / 分块处理 / 故障诊断

Key words

incremental manifold learning / ONPE / dynamically reduction / block processing / fault diagnosis

引用本文

导出引用
宋 涛;汤宝平;邓蕾. 动态增殖流形学习算法在机械故障诊断中的应用[J]. 振动与冲击, 2014, 33(23): 15-19
Song Tao;Tang Baoping;Deng Lei. A Dynamically Incremental Manifold Learning Algorithm and Its Application in Fault Diagnosis for Machinery[J]. Journal of Vibration and Shock, 2014, 33(23): 15-19

PDF(1499 KB)

Accesses

Citation

Detail

段落导航
相关文章

/