汽车碰撞安全风险决策中基于复合聚类的群决策专家权重确定方法

王素娟;雷正保;赵建

振动与冲击 ›› 2014, Vol. 33 ›› Issue (7) : 73-78.

PDF(1141 KB)
PDF(1141 KB)
振动与冲击 ›› 2014, Vol. 33 ›› Issue (7) : 73-78.
论文

汽车碰撞安全风险决策中基于复合聚类的群决策专家权重确定方法

  • 王素娟1,2, 雷正保2, 赵建3
作者信息 +

Expert-weight Determination Method in Group Decision-making Based on the Composite Clustering for Automotive-crash-safety Risk Decisions

  • WANG Su-juan 1,2,LEI Zheng-bao2, ZHAO Jian3
Author information +
文章历史 +

摘要

针对风险评估中群决策数据的处理可靠性问题,提出专家权重对于数据处理的重要性。从汽车碰撞安全研究的行业特色出发,依据专家社会因素指标,运用系统聚类和K-均值聚类分析方法,对专家进行专家权威权重聚类;依据专家提供意见的数据一致性和个体与群体一致性程度,运用基于信息熵的方法对专家进行专家意见权重聚类;将两种聚类结果进行复合聚类,得到各位专家的最终权重。结果表明,在综合专家权威权重和专家意见权重的基础上,经复合聚类得到的专家权重具有较好的均衡性和可靠性,为系统项目的研究奠定基础。

Abstract

For the data-processing reliability problems in risk-assessment group decision-making, the importance of the expert weights for the data processing was proposed. From the industry characteristics of automotive crash safety research, based on expert social factors indicators, by using two analysis methods of system clustering and K-means clustering, clustered the experts according to expert-authority-weight; Based on the data consistency and the consistency degree of individual and group from expert opinions, by using the method based on information entropy, clustered the experts according to expert-opinion-weight; Two clustering results were compositely clustered to get the final weight of the experts. The results show that the expert weights got by the composite clustering have good proportionality and reliability, based on compositing expert-authority-weight and expert-opinion-weight, it lays a foundation for the study of systems projects.



关键词

汽车碰撞安全 / 风险评估 / 群决策 / 社会因素指标 / 复合聚类 / 专家权重

Key words

Automotive crash safety / risk assessment / group decision making / social factors indicators / composite clustering / expert weight

引用本文

导出引用
王素娟;雷正保;赵建. 汽车碰撞安全风险决策中基于复合聚类的群决策专家权重确定方法[J]. 振动与冲击, 2014, 33(7): 73-78
WANG Su-juan;LEI Zheng-bao;ZHAO Jian. Expert-weight Determination Method in Group Decision-making Based on the Composite Clustering for Automotive-crash-safety Risk Decisions[J]. Journal of Vibration and Shock, 2014, 33(7): 73-78

PDF(1141 KB)

628

Accesses

0

Citation

Detail

段落导航
相关文章

/