基于附加源波叠加法的声辐射计算研究

夏雪宝;向阳;

振动与冲击 ›› 2015, Vol. 34 ›› Issue (1) : 104-109.

PDF(1852 KB)
PDF(1852 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (1) : 104-109.
论文

基于附加源波叠加法的声辐射计算研究

  • 夏雪宝1,2,向阳1,2
作者信息 +

Acoustic Radiation Calculation Based on Additional Sources Wave Superposition Method

  • Xia Xuebao1, 2,Xiang Yang 1, 2
Author information +
文章历史 +

摘要

针对单极子波叠加法在特征波数处声场解的非唯一性问题,采用一种通过添加附加源克服解非唯一性的方法-附加源波叠加法,即在单极子波叠加法的基础上添加一定数量附加源从而获得声场全波数域内的唯一解。本文给出了具有解析解的脉动球源、振荡球源及无解析解的立方箱体结构三个数值算例。计算结果表明:对于脉动球源,添加一个附加源就可较好解决声场解的非唯一性问题;对于振荡球源,增加附加源个数可解决声场解的非唯一性问题,但会降低声场解的精度,但通过增加单极子源个数可以很好提高计算精度;该方法计算效率略低于复数矢径波叠加法,但较三极子波叠加法效率更高;对于立方箱体结构,确定了最佳的附加源个数,保证了声场解的唯一性。

Abstract

The additional sources wave superposition method is a method by adding additional sources arbitrary based on monopole wave superposition method, which could overcome the problem of non-uniqueness for fictitious wave numbers encountered with monopole wave superposition method. Three examples, pulsating sphere source, swing sphere and cube radiator are given. Numerical results demonstrate that the non-uniqueness problem can be removed by adding one source for pulsating sphere source. In addition, the non-uniqueness problem also can be solved by adding more additional sources for swing sphere source, but the computational accuracy will decline with the number of additional sources rising. By increasing the number of monopole sources, the additional sources wave superposition method can achieve high accuracy. The additional wave superposition method is inefficiency than wave superposition method with complex radius vector, but it is more efficient than the tripole wave supposition method. For the cube radiator, the acoustic uniqueness solution is obtained by adding the optimized number of additional sources.

关键词

波叠加法 / 非唯一性 / 附加源 / 声辐射

Key words

wave superposition method / non-uniqueness / additional sources / acoustic radiation

引用本文

导出引用
夏雪宝;向阳;. 基于附加源波叠加法的声辐射计算研究[J]. 振动与冲击, 2015, 34(1): 104-109
Xia Xuebao;;Xiang Yang;. Acoustic Radiation Calculation Based on Additional Sources Wave Superposition Method[J]. Journal of Vibration and Shock, 2015, 34(1): 104-109

PDF(1852 KB)

626

Accesses

0

Citation

Detail

段落导航
相关文章

/