非线性系统响应功率谱密度的小波-Galerkin方法

孔凡;李书进;周旺保

振动与冲击 ›› 2015, Vol. 34 ›› Issue (1) : 130-134.

PDF(1124 KB)
PDF(1124 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (1) : 130-134.
论文

非线性系统响应功率谱密度的小波-Galerkin方法

  • 孔凡, 李书进, 周旺保
作者信息 +

POWER SPECTRUM DENSITY DETERMINATION OF NONLINEAR SYSTEM VIA A WAVELET-GALERKIN APPROACH

  • KONG Fan, LI Shujin, ZHOU Wangbao
Author information +
文章历史 +

摘要

本文发展了广义谐和小波在确定非线性系统随机动力响应中的应用。首先,利用周期广义谐和小波展开非线性动力微分方程,并考虑小波的联系系数后,可将动力微分方程转化为一组非线性代数方程。其次,利用Newton迭代法数值解答了非线性代数方程,得到了非线性动力响应的小波变换。最后,根据响应时变功率谱与各阶小波变换之间的关系,计算求得了非线性动力响应的功率谱密度。数值模拟显示了本文建议方法与Monte Carlo模拟之间的吻合程度。

Abstract

An application of generalized harmonic wavelet in the response determination of nonlinear stochastic dynamic system is developed in this paper. Specifically, first, based on the wavelet expansion of the nonlinear differential equation and the newly developed wavelet connection coefficients, the dynamic differential equation is converted into a set of nonlinear algebra equations. Next, the Newton’s method is utilized to solve algebra equations. Finally, according to the relationship between the time-varying Power Spectrum Density (PSD) and the wavelet coefficients, response PSD is therefore obtained. Pertinent numerical simulations demonstrate the reliability of the proposed technique.

 

关键词

广义谐和小波 / 功率谱密度 / 非线性 / 联系系数 / Newton迭代

Key words

Generalized harmonic wavelet / power spectrum density / nonlinear / connection coefficient / Newton&rsquo / s iteration method

引用本文

导出引用
孔凡;李书进;周旺保. 非线性系统响应功率谱密度的小波-Galerkin方法[J]. 振动与冲击, 2015, 34(1): 130-134
KONG Fan;LI Shujin;ZHOU Wangbao. POWER SPECTRUM DENSITY DETERMINATION OF NONLINEAR SYSTEM VIA A WAVELET-GALERKIN APPROACH[J]. Journal of Vibration and Shock, 2015, 34(1): 130-134

PDF(1124 KB)

Accesses

Citation

Detail

段落导航
相关文章

/