非对称周期结构中耦合波的传播特性

陈荣 吴天行

振动与冲击 ›› 2015, Vol. 34 ›› Issue (1) : 68-73.

PDF(2205 KB)
PDF(2205 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (1) : 68-73.
论文

非对称周期结构中耦合波的传播特性

  • 陈荣 吴天行
作者信息 +

Coupled wave propagation in asymmetric periodic structure

  • CHEN Rong WU Tianxing
Author information +
文章历史 +

摘要

为了揭示周期结构中纵向波和弯曲波的耦合作用,设计了对称和非对称周期结构。考虑子结构中的纵向和弯曲耦合运动,利用导纳法和传递矩阵法,得到了周期单元的传递方程。由于结构中存在多种波的耦合作用,在求解周期单元的传播系数时将出现变态矩阵,采用波型分组法,求得了周期结构中多种波型的传播系数。推导了半无限长和有限长周期结构在纵向力、横向力和弯矩作用下的动态响应。数值计算结果表明,对称周期结构中纵向波和弯曲波的带隙结构相互独立;非对称周期结构中纵向波和弯曲波的耦合明显改变了两种波的带隙结构,只有在两种波阻带重叠的频段内结构上的振动响应才存在衰减。

Abstract

Symmetric and asymmetric periodic structures are designed to investigate the coupling of longitudinal and flexural wave propagating in the structures. By using of mechanical mobility method and transfer matrix method, transfer matrices of the elements are derived in the consideration of the coupling of longitudinal and flexural wave motions. The multi-types of waves propagating the periodic structures are divided into two categories to avoid the numerical difficulties in solving the ill-conditioned transfer matrix. The propagation constants of the longitudinal and flexural waves are calculated, harmonic response of the semi-infinite and finite periodic structure in symmetric and asymmetric arrangements are obtained. Numerical simulations reveal that longitudinal wave and flexural wave are uncoupled for the symmetric periodic structure; the band structures of longitudinal and flexural wave are significantly influenced by the coupling of two waves, and longitudinal and flexural vibration response are attenuated only in the zones that stop bands of the both waves locate.

关键词

周期结构 / 传递矩阵法 / Euler梁 / 耦合波 / 传播系数

Key words

Periodic structure / Transfer matrix method / Euler beam / Coupling wave / Propagation constant.

引用本文

导出引用
陈荣 吴天行. 非对称周期结构中耦合波的传播特性[J]. 振动与冲击, 2015, 34(1): 68-73
CHEN Rong WU Tianxing. Coupled wave propagation in asymmetric periodic structure[J]. Journal of Vibration and Shock, 2015, 34(1): 68-73

PDF(2205 KB)

Accesses

Citation

Detail

段落导航
相关文章

/