干摩擦悬臂梁一阶等效固有频率研究

赵 峰1,2,3,曹树谦1,2,3,冯文周1,2,3

振动与冲击 ›› 2015, Vol. 34 ›› Issue (10) : 46-49.

PDF(1021 KB)
PDF(1021 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (10) : 46-49.
论文

干摩擦悬臂梁一阶等效固有频率研究

  • 赵  峰1,2,3,曹树谦1,2,3,冯文周1,2,3
作者信息 +

The study of the first order equivalent natural frequency for a cantilever beam with dry friction

  • ZHAO Feng1,2,3,CAO Shu-qian1,2,3,FENG Wen-zhou1,2,3
Author information +
文章历史 +

摘要

采用牛顿第二定律及拉格朗日方程,分别对干摩擦悬臂梁及等效模型建立振动控制方程,获得两种模型的激励力与频率关系式,基于能量相等建立等效方程进行一阶等效固有频率研究,获得干摩擦悬臂梁等效固有频率解析表达式。采用数值方法计算干摩擦悬臂梁模型一阶固有频率。结果表明,数值与解析结果一致性较好,即悬臂梁等效固有频率随干摩擦增大而减小。所得解析表达式能更直接获得干摩擦力对悬臂梁固有频率影响规律。

Abstract

The aim of this paper is to address the study of the natural frequency of a cantilever beam with dry friction using an equivalent method. The motion equation of the studied model and the equivalent model (a cantilever beam) is established using the Newton’s second law and the second kind of the Lagrange equation, respectively. Then the relationship between excitation force and frequency of the two models can be obtained, base on the idea of inputting same energy, thus the equivalent method can be carried out to obtain an analytical expression for the first order natural frequency of the studied model. The numerical method for the first order natural frequency is used to verify the effectiveness of this equivalent method. The results show that the first order natural frequencies obtained by numerical and analytical method are better unanimous under different dry friction, that is, the equivalent natural frequencies decrease as increasing dry friction. Furthermore, the analytical expression of the equivalent natural frequency can directly reflect a relationship between the frequency and dry friction. 

 

关键词

干摩擦 / 悬臂梁 / 固有频率 / 等效法

Key words

dry friction / cantilever beam / natural frequency / equivalent method

引用本文

导出引用
赵 峰1,2,3,曹树谦1,2,3,冯文周1,2,3. 干摩擦悬臂梁一阶等效固有频率研究[J]. 振动与冲击, 2015, 34(10): 46-49
ZHAO Feng1,2,3,CAO Shu-qian1,2,3,FENG Wen-zhou1,2,3. The study of the first order equivalent natural frequency for a cantilever beam with dry friction[J]. Journal of Vibration and Shock, 2015, 34(10): 46-49

参考文献

[1] Den Hartog J P. Forced vibrations with combined viscous and coulomb damping[J]. Phil.Mag.S.7, 1930,59(9): 801-817.
[2] 赵峰,曹树谦,于跃斌,等. 干摩擦双层梁的工作模态实验方法[J]. 振动、测试与诊断, 2013, 33(6): 971 - 976.
ZHAO Feng, CAO Shu-qian, YU Yao-bin, et al. The experimental method study of operating modal analysis on a double beam model with dry friction[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(6): 971 - 976.
[3] 贾尚帅,丁千. 刹车系统的摩擦自激振动和控制[J]. 工程力学, 2012(3): 252 - 256.
JIA Shang-shuai, DING Qian. Friction-induced self-excited vibration and control of a brake system[J]. Engineering Mechanics, 2012(3): 252 - 256.
[4] 丁千,陈予恕. 转子碰摩运动的非稳态分析[J]. 航空动力学报, 2000(2): 191-195.
DING Qian, CHEN Yu-shu. Non-stationary analysis of rotor/casing rubbing [J]. Journal of Aerospace Power, 2000(2): 191-195.
[5] 陈予恕,吴志强. 非线性模态理论的研究进展[J]. 力学进展, 1997, 27(3): 289-299.
CHEN Yu-shu, WU Zhi-qiang. Advances in study on theories of nonlinear normal modes [J]. Advances in Mechanics, 1997, 27(3): 289-299.
[6] Vakakis A F, Bergman L A, McFarland D M, et al. Current efforts towards a non-linear system identification methodology of broad applicability[J]. Proceedings of the Institution of Mechanical Engineers[C]. Journal of    Mechanical Engineering Science, 2011: 1-19.
[7] Whiteman W E, Ferri A A. Displacement-dependent dry friction damping of a beam-like structure[J]. Journal of Sound and Vibration, 1996, 198(3): 313-329.
[8] 严天宏,郑钢铁,黄文虎. 由摩擦阻尼铰实现桁架结构的被动减振研究[J]. 航空学报, 1999, 20(1): 17- 21.
YAN Tian-hong, ZHENG Gang-tie, HUANG Wen-hu. Research on passive vibration control of truss structures by displacement-dependent dry frictional joints[J]. Acta Aeronauticaet Astronautica Sinica, 1999, 20(1): 17-21.
[9] Ren Y S, Qin H Z, Zhao Z L. Nonlinear vibration analysis of a beam with dry friction at the supports[J]. Mechanics Research Communications, 1999, 26(1): 83-89.
[10] Ferri A A, Dowell E H. Frequency domain solutions to multi-degree-of-freedom, dry friction damped systems[J]. Journal of Sound and Vibration, 1988, 124(2): 207-224.
[11] Dowell E H, Schwartz H B. Forced response of a cantilever beam with a dry friction damper attached, part 1: theory[J]. Journal of Sound and Vibration, 1983, 91(2): 255-267.
[12] Young J G, Kim Y H, Chang H G. An analysis of the behavior of a simply supported beam with a dry friction damper attached[J]. Applied Acoustics, 1998, 55(1): 31-41.
[13] 郝淑英,陈予恕,张琪昌. 连接结构松动对系统非线性动力学特性的影响[J]. 天津大学学报, 2001, 34(4): 452-454.
HAO Shu-ying, CHEN Yu-shu, ZHANG Qi-chang. Effects of connect loosing and sliding on dynamic characteristics[J]. Journal of Tianjin University, 2001, 34(4): 452-454.
[14] Ferri A A, Whiteman W E. Free response of a system with negative viscous damping and displacement-dependent dry friction damping[J]. Journal of Sound and Vibration, 2007, 306: 400-418.
[15] Ostachowicz W M. A discrete linear beam model to investigate the nonliear effects of slip friction[J]. Computer and Structures, 1990, 36(4): 721-728.
[16] Poudou O J. Modeling and analysis of the dynamics of dry-friction-damped structural systems[D]. USA:University of Michigan, 2007.
[17] Dowell E H. The behavior of a linear, damped modal system with a non-linear spring-mass-dry friction damper system attached[J]. Journal of Sound and Vibration, 1983, 89(1): 65 - 84.
[18] Dowell E H. Damping in beams and plates due to slipping at the support boundaries[J]. Journal of Sound and Vibration, 1986, 105(2): 243-253.
[19] Kerschen G, Worden K, Vakakis A F, et al. Past, present and future of nonlinear system identification in structural dynamics[J]. Mechanical Systems and Signal Processing, 2006, 20(3): 505-592.
[20] 丁虎, 张国策, 陈立群. 超临界轴向运动梁横向非线性振动频域分析[J]. 固体力学学报, 2011, 32(4): 360-363.
DING Hu, ZHANG Guo-ce, CHEN Li-qun. Frequency domain analysis of supercritical nonlinear vibration of axially moving beams[J]. Chinese Journal of Solid Mechanics, 2011, 32(4): 360-363.
[21] 佟德纯. 设备故障诊断技术讲座,第四讲:机械设备振动特征分析[J]. 振动与冲击, 1993, 12(2): 70-78.
DONG De-chun. Lectures of diagnostic techniques of Equipment failures, the fourth section: vibration characteristics analysis of mechanical equipments [J]. Journal of Vibration and Shock, 1993, 12(2): 70-78.

PDF(1021 KB)

Accesses

Citation

Detail

段落导航
相关文章

/