基于侵彻试验,运用LY-DYNA软件,有限元法和光滑粒子法相结合,采用混凝土连续帽盖模型,对12.7mm穿甲弹侵彻小直径钢管约束混凝土厚靶机理进行了数值模拟研究。研究表明:数值模拟结果与侵彻试验吻合较好,可较好地反映钢管约束混凝土靶核心混凝土侧面环向裂纹;钢管对核心混凝土的约束作用主要发生在弹丸扩孔过程;核心混凝土侧面环向裂纹的形成是入射压缩波与靶体背面反射拉伸波及钢管约束效应共同作用的结果;钢管约束混凝土靶的抗侵彻能力优于无钢管约束混凝土靶。
Abstract
Based on the penetration experiments, the penetration mechanism of steel tube confined concrete targets against 12.7mm armor piercing projectile(APP) was simulated with LY-DYNA software, finite element-smooth particle hydrodynamics method and CSCM_CONCRETE model. The results show that: the simulation agrees well with the experiments, which can well describe the hoop cracks on side face of the steel tube confined concrete; the confinement effect of steel tube on the confined concrete works while the projectile expanding; the mechanism of the hoop cracks on side face of confined concrete is the mutual results of the incident compression wave, reflected stretching wave from distal face and the confinement of the steel tube; the ability of steel tube confined concrete target is higher than that of normal concrete target.
关键词
防护工程 /
约束混凝土 /
侵彻机理 /
数值模拟
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 韩林海. 钢管混凝土结构[M]. 北京:科学出版社,2000.
[2] Sakina K, Nakahara H, Morino S, et al. Behavior of Centrally Loaded Concrete Filled Steel Tubes Short Columns[J]. Journal of Structural Engineering, 2004, 130(2):180-188.
[3] Shan J H, Chen R, Zhang W X et al. Behavior of Concrete Filled Tubes and Confined Concrete Filled Tubes under High Speed Impact[J]. Advances in Structural Engineering,2007, 10(2):209-218.
[4] Fujikura S, Bruneau M, Lopez-Garcia D. Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading[J]. Journal of Bridge Engineering, 2008, 13(6):586-594.
[5] Meuric OFJ, Sheridan J, O'Caroll C et al. Numerical Prediction of Penetration into Reinforced Concrete Using a Combined Grid Based and Meshless Lagrangian Approach[C]. In:10th Int. Symp. Interaction of the Effects of Munitions with Structures, San Diego, 2001.
[6] Murray YD. Uuers manual for LS_DYNA concrete material model 159[R]. FHWA-HRT-05-062, Washington DC, 2007.
[7] Murray YD, Abu-Odeh A, Bligh R. Evaluation of LS-DYNA Concrete Material Model 159[R]. FHWA- HRT-05-063,Washington DC, 2007.
[8] 甄明. 有限空腔膨胀理论及约束混凝土抗侵彻机理研究[D]. 长沙:国防科学技术大学,2013.
[9] 侯二永. 陶瓷间隙靶抗12.7mm穿甲燃烧弹机理及性能研究[D]. 长沙:国防 科学技术大学,2008.
[10] LS-DYNA KEYWORD USER'S MANUAL [M]. Version 971. Livermore software Technology Corporation, 2007.
[11] 沈蒲生,梁兴文. 混凝土结构设计原理(第三版)[M]. 高等教育出版社,2007.
[12] 王元丰,梁亚平. 高性能混凝土的弹性模量与泊松比[J]. 北方交通大学学报,2004,28(1):5-7,16.
Wang YP, Liang YP. Study on Modulus of Elasticity and Poisson Ratio of High Performance Concrete[ J].
Journal of Northern Jiao-tong University, 2004, 28(1): 5-7, 16.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}