基于QGA和SK的滚动轴承故障诊断新方法

徐可君1,任帅2,秦海勤1,李志农2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (11) : 105-109.

PDF(1976 KB)
PDF(1976 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (11) : 105-109.
论文

基于QGA和SK的滚动轴承故障诊断新方法

  • 徐可君1,任帅2 ,秦海勤1,李志农2
作者信息 +

Rolling Bearing Fault Diagnosis by fusing Quantum Genetic Algorithm and Spectral Kurtosis

  • XU Ke-jun1,  REN Shuai2,  QIN Hai-qin1,  LI Zhi-nong2
Author information +
文章历史 +

摘要

基于量子遗传算法收敛速度快、全局寻优能力强的特点,将谱峭度法和量子遗传算法相融合,提出一种滚动轴承故障诊断的新方法。该方法以经初始带通滤波后的原信号的谱峭度作为量子遗传算法的适应度函数,重新优化设计最优滤波器,以设计的最优带通滤波器对原始信号滤波并进行包络分析,从而实现轴承故障的诊断。实测数据分析表明,本文方法所得峭度谱值明显增大,包络谱线更加干净,故障特征频率更加明显。同时研究发现,本文方法诊断精度几乎不受传感器位置的影响。
 

Abstract

Based on rapid convergence and good global search capacity, a new method for rolling bearing fault diagnosis was discussed by combining quantum genetic algorithm(QGA) and spectral kurtosis(SK). The method takes the value of SK,which was gained by primary band-pass filter, as the fitness function of QGA to design optimal band-pass filter. Then the original signal was filtered by the optimal band-pass filter. The characteristic frequency of rolling bearing fault can be nicely obtained by envelope analysis. The method was used to analysis real testing signal. The result shows that the value of SK was much larger, the envelope spectral of filtered signal and the characteristic frequencies were much clearer than the traditional SK results. The result also shows that the location of signal transducer has few impacts on the new method.

关键词

滚动轴承 / 量子遗传算法 / 谱峭度 / 包络分析 / 故障诊断 /

Key words

rolling bearing / quantum genetic algorithm / spectral kurtosis / envelope analysis / fault diagnosis

引用本文

导出引用
徐可君1,任帅2,秦海勤1,李志农2. 基于QGA和SK的滚动轴承故障诊断新方法[J]. 振动与冲击, 2015, 34(11): 105-109
XU Ke-jun1, REN Shuai2, QIN Hai-qin1, LI Zhi-nong2. Rolling Bearing Fault Diagnosis by fusing Quantum Genetic Algorithm and Spectral Kurtosis[J]. Journal of Vibration and Shock, 2015, 34(11): 105-109

参考文献

[1] D HO, R. B. Randall. Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals[J]. Mechanical Systems and Signal Processing, 2000,14(5): 763-788.
[2] 沈庆根, 郑水英.设备故障诊断[M].北京: 化学工业出版社, 2005.
[3] R F Dwyer. Detection of Non-gaussian Signals by Frequency Domain Kurtosis Estimation[C]. Int.  Conf.  on Acoustic, Speech, and Signal Processing, Boston 1983: 607- 610.
[4] J Antoni. The spectral kurtosis: a useful tool for characterizing non-stationary signals[J]. Mechanical Systems and Signal Processing, 2006, 20(2): 282-307.
[5] J Antoni. Fast computation of kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007, 21: 108-124.
[6] J Antoni, R B Randall. The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines[J]. Mechanical Systems and Signal Processing,  2006, 20(2): 308-331.
[7] 苏文胜, 王奉涛, 张志新等. EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J]. 振动与冲击, 2010, 29(3): 18-21.
SU Wen-sheng,WANG Feng-tao, ZHANG Zhi-xin, et al. Application of EMD Denoising and Spectral Kurtosis in Early Fault Diagnosis of Rolling Element Bearings[J]. Journal of Vibration and Shock, 2010, 29(3): 18-21.
[8] 蔡艳平, 李艾华, 石林锁等. 基于EMD与谱峭度的滚动轴承故障检测改进包络谱分析[J] . 振动与冲击, 2011, 30(2): 167-172.
CAI Yan-ping, LI Ai-hua, SHI Lin-suo, et al. Roller Bearing Fault Detection Using Improved Envelope Spectrum Analysis Based on EMD and Spectrum Kurtosis[J]. Journal of Vibration and Shock, 2011, 30(2): 167-172.
[9] 王晓冬, 何正嘉, 訾艳阳. 滚动轴承故障诊断的多小波谱峭度方法[J].西安交通大学学报, 2010,44(3):77-81.
WANG Xiao-dong, HE Zheng-jia, ZI Yan-yang. Spectral Kurtosis of Multiwavelet for Fault Diagnosis of Rolling Bearing[J].Journal of Xi’an Jiaotong University, 2010,44(3):77-81.
[10] A Narayanan, M Moore. Quantum -inspired Genetic Algorithms[C]. Proceedings of IEEE International Conference on Evolutionary Computation. Nagoya,Japan. 1996:61-66.
[11] 杨俊安, 庄镇泉, 史亮. 多宇宙并行量子遗传算法[J].电子学报, 2004, 32(6): 923-928.
Yang Jun-an, Zhuang Zhen-quan, Shi Liang. Multi- Universe Parallel Quantum Genetic Algorithm[J].Acta Electronica Sinica, 2004, 32(6): 923-928.
[12] 夏培肃. 量子计算[J]. 计算机研究与发展, 2001,38(10):1153-1171.
Xia Pei-su. Quantum computing [J]. Journal of Computer Research and Development, 2001,38(10):1153-1171.
[13] H Ocak, K A Loparo. HMM-based fault detection and diagnosis scheme for rolling element bearings[J].Journal of Vibration and Acoustics, 2005, 127:299-306.

PDF(1976 KB)

Accesses

Citation

Detail

段落导航
相关文章

/