研究了耦合非线性能量阱的非保守系统的定向能量传递现象。基于复变量平均法推导含有阻尼参数的系统慢变方程,求解出系统能量与各参数近似关系,获得了系统能够实现定向能量传递时阻尼必须满足的条件,并给出了非线性能量阱具有吸振能力时线性振子阻尼有效范围,最后数值分析验证上述研究结果。
Abstract
Targeted energy transfer is investigated in non-conservative system with nonlinear energy sink. First we get the slow-flow dynamics of system based on the complex-averaging method. Then we obtain the approximate relationship between energy of system with structural parameters, get the necessary condition of damp which system can achieve targeted energy transfer. We also obtain the effective range of linear oscillator damp which nonlinear energy sink has the capacity of vibration suppression. At last the above analysis is verified by numerical simulations.
关键词
非线性能量阱 /
定向能量传递 /
立方刚度 /
阻尼约束 /
振动抑制
{{custom_keyword}} /
Key words
nonlinear energy sink /
targeted energy transfer /
cubic stiffness /
damp conditions /
vibration suppression
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Barry H, Khaki M, Mark S, et al. Advancing ORS technologies and capabilities with a space tourist suborbital vehicle[C]//AIAA SPACE 2009 Conference. California. 2009:14-17.
[2] Andrew D S.QuickSAT/step_SATdb-A satellite concurent design automation and design for manufacturabillty cloud based environment for PnP based satellites[J]. AIAA.2011:29-31.
[3] Gendelman O V, Manevitch L I, Vakakis A F. Energy pumping in nonlinear mechanical oscillators: Part I Dynamics of The underlying Hamiltonian systems[J]. Journal of Applied Mechanics, 2001, 68(1): 34–41.
[4] Vakakis F, Gendelman O V. Energy pumping in coupled mechanical oscillators, Part II: resonance capture[J]. Journal of Applied Mechanics, 2001, 68: 42–48.
[5] Manevitch L I.The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables[J]. Nonlinear Dynamics, 2001, 25: 95-109.
[6] Gendelman O V, Gorlov D V, Manevitch L I, et al. Dynamics of coupled linear and essentially nonlinear oscillators with substantially different masses[J]. Journal of Sound and Vibration, 2005, 286: 1-19.
[7] 张也弛,孔宪仁,张红亮.非线性耦合振子间的靶能量传递研究:保守系统中的完全传递[J]. 振动与冲击,2012, 31(1):150-155.
ZHANG Yechi, KONG Xianren, ZHANG Hongliang. Targeted energy transfer among coupled nonlinear oscillators: complete energy exchange in a conservative system[J]. Journal of Vibration and Shock, 2012, 31(1): 150-155.
[8] Manevitch L I, Gourdon E, Lamarque C H. Towards the design of an optimal energetic sink in a strongly inhomogeneous two-degree-of-freedom system[J].Journal of Applied and Mechanics, 2007, 74:1078-1086.
[9] 张也弛,孔宪仁.非线性耦合振子间产生靶能量传递的初始条件[J]. 哈尔滨工业大学学报,2012, 44(7): 21-26.
ZHANG Yechi, KONG Xianren.Initial conditions for targeted energy transfer in coupled nonlinear oscillators[J]. Journal of Harbin Institute of Technology, 2012, 44(7):21-26.
[10] Nguyen T A, Pernot. S. Design criteria for optimally tuned nonlinear energy sinks Part I: transient regime[J]. Nonlinear Dynamics, 2012, 69: 1-19.
[11] Sapsis P H, Quinn D D, Vakakis A F. Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments[J]. Journal of Vibration and Acoustics, 2012, 134: 1-12.
[12] Manevitch L I, Musienko A I, Lamarque C H. New analytical approach to energy pumping problem in Strongly Nonhomogeneous 2dof System[J]. Meccanica, 2007, 42: 77-83.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}