由于间隙的存在,随着速度的增加操纵面会发生非线性气动弹性响应,即操纵面发生极限环振动,其振动频率比飞机结构疲劳载荷谱的频率高,因此操纵面在每次飞行中只需经历1~2秒的极限环振动,其在整个飞机服役期内累加得到的总循环数将达到十万次的量级,可见操纵面极限环振动引起的结构疲劳损伤不容忽视,所以需要建立起操纵面气动弹性数据(飞行速度和间隙)与结构疲劳损伤的对应关系。针对此问题,本文将非线性气动弹性分析方法和结构疲劳预测技术结合,发展一套分析流程用来讨论操纵面极限环振动与周边结构疲劳的关系,为设定操纵面间隙值提供参考。为了对此分析流程进行说明,文中对具有操纵面的复杂机翼进行了非线性气动弹性分析获得其偏转角响应,并将其转化为作用在作动器两头耳片上的疲劳载荷谱,通过疲劳分析获得周边结构疲劳特性与操纵面非线性气动弹性响应的关系。
Abstract
Due to free play, aeroelastic response of control surface is nonlinear, control surface will occur Limited Cycle Vibration (LCO). Frequency of LCO is higher than the one of fatigue spectrum, therefore the cycle number will be more than one hundred thousand times, and fatigue damage induced by LCO has to be taken into consideration. Thus relationship between aeroelastic informations of control surface (free play and velocity) and structural fatigue damage should be established. In this paper, based on nonlinear aeroelastic analysis and structural fatigue analysis, an analytical procedure was developed to study the relationship between LCO of control surface and structural fatigue damage, and this analytical procedure can guide the confirmation of free play. In order to illustrate this method, rotational angle response of control surface was got by nonlinear aeroelastic analysis, based on these response fatigue load spectrum was formed, finally structural fatigue analysis was carried out to obtain the relationship between aeroelasticity and structural fatigue.
关键词
操纵面 /
间隙 /
极限环振动 /
疲劳损伤
{{custom_keyword}} /
Key words
control surface /
free play /
LCO /
fatigue damage
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] William D. Anderson, Sean Mortara. F-22 Aeroelastic Design and Test Validation[J]. AIAA 2007-1764.
[2]J. van Muijden, B.B. Prananta, R.P.G. Veul. Efficient Aeroelastic Simulation in a Parametric Procedure for Fatigue Aanlysis[J]. 26th International Congress of the Aeronautical Sciences.
[3]贺尔铭,刘峰,胡亚琪,等.热声载荷下薄壁结构非线性振动响应分析及疲劳寿命预测[J].振动与冲击,2013,32(24):135-139.
HE Er-ming,LIU Feng,HU Ya-qi,et al.Nonlinear vibration response analysis and fatigue life prediction of a thin-walled structure under thermal-acoustic loading[J].Journal of Vibration and Shock,2013,32(24):135-139.
[4] 贾尚帅,丁千,刘炜.超音速弹翼非线性颤振分析与控制[J].振动与冲击,2012,31(13):108-112.
JIA Shang-shuai,DING Qian,LIU Wei.Nonlinear flutter analysis and control of supersonic missile wings[J].Journal of Vibration and Shock,2012,31(13):108-112.
[5] M.J.de C.Henshawa, K.J. Badcock.Non-linear aeroelastic prediction for aircraft applications[J],Progress in Aerospace Sciences 43 (2007) 65–137.
[6] Earl Dowell, John Edwards, Thomas Strganac. Nonlinear Aeroelasticity[J]. Journal of Aircraft Vol.40, No.5, September–October 2003.
[7] 杨智春. 结构非线性颤振的理论与实验研究[D]. 西安,西北工业大学硕士论文. 1987.
Yang Zhichun. Theory and experiment research of Structural nonlinear flutter[D]. Xi'an, Northwestern Polytechnical University, master's thesis.
[8] In Lee, Seung-Ho Kim. Aeroelastic Analysis of a Flexible Control Surface with Structural Nonlinearity[J]. Journal of Aircraft, Vol. 32, No. 4, July-August 1995, pp.868-847.
[9] 姚卫星. 结构疲劳寿命分析[M]. 国防工业出版社. 2004.
Yao Weixin. Fatigue Life Prediction of Structures[M]. National Defence Industry Press.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}