考虑气动加热的翼面结构热模态试验方法研究

刘浩,李晓东,杨文岐,孙侠生

振动与冲击 ›› 2015, Vol. 34 ›› Issue (13) : 101-108.

PDF(2079 KB)
PDF(2079 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (13) : 101-108.
论文

考虑气动加热的翼面结构热模态试验方法研究

  • 刘浩,李晓东,杨文岐,孙侠生
作者信息 +

Study on Thermal Modal Test Method of a Wing Structure Considering Aerodynamic Heating

  • LIU Hao   LI Xiaodong  YANG Wenqi  SUN Xiasheng
Author information +
文章历史 +

摘要

受热结构的热模态特性试验研究对高超声速飞行器设计校核和飞行安全具有重要的意义。本文建立了一套考虑气动加热影响的结构热模态试验系统,依据气动加热数值计算得到的结构温度场计算了加热温度跟踪控制系统参数,对飞行过程中的瞬态热环境进行模拟,测量了各个加热温区的温度随加热时间的变化,验证了加热温度控制的精确性。将智能PID控制技术与传统相位共振方法相结合,提出了模态频率自动跟踪方法,使传统相位共振方法的应用范围扩展至瞬态热环境下时变结构系统的模态试验领域。设计了一个切尖三角形薄板翼面结构试验件,并采用模态频率自动跟踪方法对该结构进行了热模态试验,获得了结构的前四阶模态频率随加热时间的变化,并与结构有限元数值计算结果进行了比较,试验与计算结果吻合得很好,验证了模态频率自动跟踪方法对热模态测试问题的有效性和准确性。分别通过对瞬态和稳态热环境下结构模态频率试验和计算结果的分析,探讨了气动加热产生的结构瞬态温度场对模态频率影响的机理,解释了模态频率随加热时间变化趋势的内在原因。

Abstract

It is important to investigate the thermal modal test of wing structure in the design and flight of the modern hypersonic flight vehicles. The thermal modal test system considering aerodynamic heating is founded. The temperature control parameters depended on transient temperature field calculated by numerical analysis, are used to simulate the transient thermal environment. The temperature changing with heating time is measured, that validates the precious of temperature control. The modal frequency auto-tracing method is founded by combined the intelligent PID (Proportion Integration Differentiation) control technology with the traditional phase resonance method, that expands the traditional phase resonance method into the modal parameters identification of time-dependent structural dynamics system. The modal frequency auto-tracing method has been used to measure the first four thermal modal frequencies of a triangular wing structure in a thermal modal test. The test results are well agreed with the results of numerical calculation by FEM (Finite Element Method), which indicates that the modal frequency auto-tracing method of time-dependent modal parameters identification is accurate and realizable. In addition, the identification results under uniform temperature distribution thermal structure have been measured, that are also well agreed with the results of the numerical computation. The reason of modal frequencies of time-dependent thermal structure changed with the heating time is discovered in the end of this paper, by comparing the identification results under transient temperature field with that under uniform temperature field.

关键词

高超声速飞行器 / 气动加热 / 翼面结构 / 热模态试验 / 模态频率自动跟踪 / 相位共振法

引用本文

导出引用
刘浩,李晓东,杨文岐,孙侠生. 考虑气动加热的翼面结构热模态试验方法研究[J]. 振动与冲击, 2015, 34(13): 101-108
LIU Hao LI Xiaodong YANG Wenqi SUN Xiasheng . Study on Thermal Modal Test Method of a Wing Structure Considering Aerodynamic Heating[J]. Journal of Vibration and Shock, 2015, 34(13): 101-108

参考文献

[1] Jack J. M., Adam J. C. and Andrew R. C., “Aerothermoelastic Modeling Considerations for Hypersonic Vehicles”[C]. 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2009-7397, 2009.
[2] Nathan J. Falkiewicz, Carlos E. S. Cesnik, Andrew R. Crowell, et al. “Reduced Order Aerothermoelastic Framework for Hypersonic Vehicle Control Simulation”[C]. AIAA Atmospheric Flight Mechanics Conference, AIAA 2010-7928, 2010.
[3] Vosteen L. F, and Fuller K. E., “Behavier of A Cantilever Plate Under Rapid Heating Conditions”[R]. NACA RM L55E20, 1955.
[4] Richard A., Pride L. and Ross L., “Some Effects of Rapid Heating on Box Beam”[C]. NACA Conference on Aircraft Loads, Flutter and Structures, 1955, pp. 489-495.
[5] Mcintyre K. L., “Vibration Testing During High Heat Rates”[R]. RTD-TDR-63-4197, part1, 1963.
[6] Vosteen L. F., McWithey R. R. and Thomson R. G., “Effect of Transient Heating on Vibration Frequencies of Some Simple Wing Structures”[R]. NACA technical note 4054, 1957.
[7] Spivey N. D., “High-Temperature Modal Survey of A Hot-Structure Control Surface”[C]. The 27th International Congress of the Aeronautical Sciences, Nice, France, 2010.
[8] WU Dafang, ZHAO Shougen, PAN Bing, et al. “Reserch on Thermal-Vibration Joint Test for Wing Structure of High-Speed Cruise Missile”[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9), pp. 1633-1642. (in Chinese)
吴大方,赵寿根,潘兵等. 高速巡航导弹翼面结构热振联合试验研究[J]. 航空学报,2012,33(9),pp. 1633-1642.
[9] WU Dafang, ZHAO Shougen, PAN Bing, et al. “Experiment study on High Temperature Thermal-Vibration Characteristics for Hollow Wing Structure of High-Speed Flight Vehicles”[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4), pp. 598-605.  (in Chinese)
吴大方,赵寿根,潘兵等. 高速飞行器中空翼结构高温热振动特性试验研究[J]. 力学学报,2013,45(4),pp. 598-605.
[10] SU Huachang, QIAN Yongbo, LI Zengwen, et al. “The Study of Rudder Thermo-Modal Test Technique”[J]. Structure & Environment Engineering, 2011, 38(5), pp. 18-24. (in Chinese)
苏华昌,骞永博,李增文等. 舵面热模态试验技术研究[J]. 强度与环境,2011,38(5),pp. 18-24.
[11] XIAO Naifeng, LIU Yongqing. “Research of Control Technology in Thermal-Vibration Test”[J]. Structure & Environment Engineering, 2012, 39(2), pp. 53-57. (in Chinese)
肖乃风,刘永清. 热振联合试验控制技术研究[J]. 强度与环境,2012,39(2),pp. 53-57.
[12] Shi Z. Y. and Law S. S., “Identification of Linear Time-Varying Dynamical Systems Using Hilbert Transform and EMD Method”[J]. Journal of Application Mechanics, 2007, 74, pp. 223-230.
[13] XU Xiuzhong, HUA Hongxing, ZHANG Zhiyi, et al. “Time-Varying Modal Frequency Identification by Using Time-Frequency Representation”[J]. Journal of Vibration and Shock, 2002, 21(2), pp. 36-44. (in Chinese)
续秀忠,华宏星,张志谊等. 应用时频表示进行结构时变模态频率辨识[J]. 振动与冲击,2002,21(2),pp.36-44.
[14] SHI Zhiyu, SHEN Lin. “Parameter Identification of Linear Time-Varying Dynamical System based on Wavelet Method”[J]. Journal of Vibration, Measurement & Diognosis, 2008, 28(2), pp. 108-112. (in Chinese)
史治宇,沈林. 基于小波方法的时变动力系统参数识别[J]. 振动测试与诊断,2008,28(2),pp. 108-112.
[15] XU Xiuzhong, ZHANG Zhiyi. “Decomposition of Time-Varying Modal by Time-Frequency Filter”[J]. Noise and Vibration Control, 2005, 5, pp. 15-17. (in Chinese)
续秀忠,张志谊. 基于时频滤波的时变模态分解方法[J]. 噪声与振动控制,2005,5,pp.15-17.
[16] YU Kaiping. “Study on Time-Varying Structural Dynamics Numerical Algorithm and Modal Parameter Identification Method”[D]. A Dissertation for the Doctor Degree of Harbin Institute of Technology, 2000.1. (in Chinese)
于开平. 时变结构动力学数值方法及其模态参数识别方法研究[D]. 哈尔滨工业大学博士学位论文,2000.
[17] XU Xuzhong, ZHANG Zhiyi, HUA Hongxing, et al. “Identification of Time-Variant Modal Parameters by a Time-Varying Parameter Approach”[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24, pp. 230-233. (in Chinese)
续秀忠,张志谊,华宏星等. 应用时变参数建模方法辨识时变模态参数[J]. 航空学报,2003,24,pp. 230-233.
[18] K.A. Petsounis and S.D. Fassois., “Non-Stationary Functional Series TARMA Vibration Modeling and Analysis In A Planar Manipulator”[J]. Journal of Sound and Vibration, 2000, 231(5), pp. 1355-1376.

PDF(2079 KB)

Accesses

Citation

Detail

段落导航
相关文章

/