超高速撞击压力容器后壁损伤实验及建模研究

盖芳芳 1, 才源 2,郝俊才 1,乔牧 1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (13) : 12-17.

PDF(1366 KB)
PDF(1366 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (13) : 12-17.
论文

超高速撞击压力容器后壁损伤实验及建模研究

  • 盖芳芳 1, 才源 2,郝俊才 1,乔牧 1
作者信息 +

Experimental and modeling investigation into damage of pressure vessels’ rear wall produced by hypervelocity impact on pressure vessels

  • GAI Fang-fang 1    CAI Yuan 2    HAO Jun-cai 1    QIAO Mu 1
Author information +
文章历史 +

摘要

采用地面模拟撞击实验与理论分析相结合的手段,对球形弹丸超高速正撞击圆柱形充气压力容器后壁损伤问题进行研究。首先应用二级轻气炮进行压力容器超高速撞击实验,获得了容器后壁损伤特性;然后基于线弹性断裂力学、弹性力学理论,在弹丸不同破碎模式下,将碎片云及气体冲击波对容器后壁的作用简化为局部均布冲击载荷对固支圆板的作用,建立了容器后壁损伤预报模型,并通过与实验结果的比较,验证了模型的有效性。确定了在碎片云与气体冲击波作用下容器后壁产生穿孔和裂纹的临界条件及尺寸;并在考虑容器壁曲率影响的条件下,获得了容器后壁发生灾难性破坏的临界条件。

Abstract

Ground simulation impact experiment and theoretical analysis method is used for investigate damage characteristic of pressure vessel rear wall by spherical projectiles hypervelocity impact on gas-filled pressure vessels at normal angles. First, experiments of spherical projectiles hypervelocity impact on gas-filled pressure vessels are performed by two stage light gas gun loading technique, the damage characteristic of pressure vessel rear wall is obtained. based on linear-elastic fracture mechanics theory and elastic mechanics theory, simplified model prediction model for damage of pressure vessels is build on different fragmentized patterns of projectiles. In the model the rear wall is assumed to be fixed plate, the debris cloud and gas shock wave is assumed to be uniformly load. To verify the effectiveness of the model through the comparison with experimental results. The critical condition of rear wall perforation and crack, and damage size under the action of debris cloud and gas shock wave is obtained. The critical condition of catastrophic rupture of rear wall in the conditions of considering the curvature effect is obtained.

关键词

空间碎片 / 超高速撞击 / 充气压力容器 / 撞击实验 / 损伤预报

Key words

space debris / hypervelocity impact / gas-filled pressure vessels / impact testing / damage prediction

引用本文

导出引用
盖芳芳 1, 才源 2,郝俊才 1,乔牧 1. 超高速撞击压力容器后壁损伤实验及建模研究[J]. 振动与冲击, 2015, 34(13): 12-17
GAI Fang-fang 1 CAI Yuan 2 HAO Jun-cai 1 QIAO Mu 1. Experimental and modeling investigation into damage of pressure vessels’ rear wall produced by hypervelocity impact on pressure vessels[J]. Journal of Vibration and Shock, 2015, 34(13): 12-17

参考文献

[1] F. Schäfer. Hypervelocity Impact Testing Impacts on Pressure Vessels Final Report[R]. EMI Report I-27/01, Germany: Ernst-Mach-Institut, 2001.
[2] J. P. Whitney. Hypervelocity Impact Tests of Shielded and Unshielded Pressure Vessels[R]. NASA Report JSC 32294, USA: NASA Johnson Space Center, 1993.
[3] L. J. Friesen. Hypervelocity Impact Tests of Shielded and Unshielded Pressure Vessels, Part II[R]. NASA Report JSC 27081, USA: NASA Johnson Space Center, 1995.
[4] 管公顺. 航天器空间碎片防护结构超高速撞击特性研究[D]. 哈尔滨: 哈尔滨工业大学博士学位论文, 2006: 124~131.
GUAN Gong-shun. Hypervelocity impact characteristic investigation of spacecraft space debris shield configuration[D]. Harbin: Harbin Institute of Technology, 2006: 124~131.
[5] 郑伟,庞宝君,李锋,等.填充空心球/铝基复合材料结构的超高速撞击损伤特性研究[J].振动与冲击, 2013, 32(18): 141~145.
ZHENG Wei, PANG Bao-jun, LI Feng, et al. Damage characteristics of a cenosphere/aluminum matrix composite stuffed shield under hypervelocity impact[J]. Journal of Vibration and Shock, 2013, 32(18): 141~145.
[6] 张伟, 管公顺, 哈跃等.弹丸超高速撞击压力容器损伤实验研究[J].实验力学, 2004, 19(2): 229~235.
ZHANG Wei, GUAN Gong-shun, Ha Yue, et al. Experimental investigation of high velocity projectile impact damage on pressure vessels[J]. Journal of Experimental Mechanics, 2004, 19(2): 229~235.
[7] 张伟, 庞宝君, 邹经湘. 充气压力容器超高速撞击实验研究[J]. 爆炸与冲击, 2000, 20(4): 353~358.
ZHANG Wei, PANG Bao-jun, ZHOU Jing-xiang. Experimental investigation of velocity impact on gas filled pressure vessels[J]. Explosion and Shock Waves, 2000, 20(4): 353~358.
[8] 盖芳芳, 庞宝君, 管公顺. 超高速撞击充气压力容器碎片云减速运动建模研究[J]. 高压物理学报, 2012, 26(2): 177~184.
GAI Fang-fang, PANG Bao-jun, GUAN Gong-shun. Model for the deceleration of secondary debris produced by hypervelocity impact on pressure vessels[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 177~184.
[9] 盖芳芳, 庞宝君, 管公顺. 空间碎片超高速撞击压力容器碎片云特性数值模拟研究[J]. 高压物理学报, 2009, 23(3): 223~228.
GAI Fang-fang, PANG Bao-jun, GUAN Gong-shun. Numerical investigation on the characteristics of debris clouds produced by hypervelocity impact on pressure vessels[J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 223~228.
[10] Y. W. Lee, T. Wierzbicki. Fracture Prediction of Thin Plates under Localized Impulsive Loading Part I: Dishing[J]. Int J Impact Engineering, 2005, 31: 1253~1276.
[11] 张振华, 朱锡. 刚塑性板在柱状炸药接触爆炸载荷作用下的花瓣开裂研究[J]. 船舶力学, 2004, 8(5): 113~119.
ZHANG Zhen-hua, ZHU Xi. Petaling of rigid plastic plate under contact explosive loading of cylindrical dynamite[J]. Journal of Ship Mechanics, 2004, 8(5): 113~119.
[12] 庞宝君, 盖芳芳, 管公顺. 高速撞击充气压力容器前壁损伤数值模拟. 中国空间科学技术, 2010, 30(4): 76~82.
PANG Bao-jun, GAI Fang-fang, GUAN Gong-shun. Numerical investigation into damage of gas-filled pressure vessels’ front side due to hypervelocity impact[J]. Chinese Space Science and Technology, 2010, 30(4): 76~82.

PDF(1366 KB)

Accesses

Citation

Detail

段落导航
相关文章

/