拉线初张力对特高压双柱悬索拉线塔受力性能影响的风洞试验研究

俞登科1,李正良1,施菁华2,晏致涛1,肖正直1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (13) : 163-168.

PDF(1964 KB)
PDF(1964 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (13) : 163-168.
论文

拉线初张力对特高压双柱悬索拉线塔受力性能影响的风洞试验研究

  • 俞登科1,李正良1,施菁华2,晏致涛1,肖正直1
作者信息 +

Wind Tunnel Test on the Effect of guy Pretension on Mechanical Properties of UHV Cross-Rope Suspension Tower-Line

  • Yu Deng-ke 1   Li Zheng-liang 1   Shi Jing-hua2   Yan zhi-tao1   Xiao Zheng-zhi1
Author information +
文章历史 +

摘要

为研究拉线初张力对±800kV特高压双柱悬索拉线塔抗风性能产生的影响,分别取拉线初张力为其设计承载力的15%、20%、25%,进行了塔线体系气动弹性模型的风洞试验。试验结果表明:拉线初张力的改变对荷载状态下塔线体系的受力性能影响显著,且对双柱支座反力和拉线拉力的影响呈非线性关系,应对拉线初张力进行优化选取。

Abstract

The effect of guy initial tension on wind-resistant performance of the ±800kV direct current (DC) cross-rope suspension tower-line is investigated through an aero-elastic model test in a boundary layer wind tunnel. Three kinds of guy initial tensions (15%, 20%, and 25% of the ultimate stress) were selected. The results show that the changes of guy initial tension have a significant influence on mechanical properties of tower-line system under wind load condition. There is a nonlinear-relationship influence on tension in guys and compression in masts. Thus the guy initial tension should be selected optimally.
 

关键词

拉线初张力 / 双柱悬索拉线塔 / 气动弹性模型 / 风洞试验 / 风振响应

Key words

guy pretension / cross-rope suspension tower / aero-elastic model / wind tunnel test / wind-induced responses

引用本文

导出引用
俞登科1,李正良1,施菁华2,晏致涛1,肖正直1. 拉线初张力对特高压双柱悬索拉线塔受力性能影响的风洞试验研究[J]. 振动与冲击, 2015, 34(13): 163-168
Yu Deng-ke 1 Li Zheng-liang 1 Shi Jing-hua2 Yan zhi-tao1 Xiao Zheng-zhi1. Wind Tunnel Test on the Effect of guy Pretension on Mechanical Properties of UHV Cross-Rope Suspension Tower-Line[J]. Journal of Vibration and Shock, 2015, 34(13): 163-168

参考文献

[1]  Roberto H.Behncke,H.Brain White. The cross rope suspension structure [J]. Electrical Transmission in a New Age. 2002, 259-267.
[2] 俞登科,李正良等.基于矩方法的特高压输电塔抗风可靠度分析 [J]. 工程力学, 2013, 30(5): 311-316.
Yu Deng-ke, Li Zheng-liang, et, al. Wind-resistant reliability analysis of UHV transmission tower based on moment methods [J]. Engineering Mechanics, 2013, 30(5): 311-316. (in Chinese)
[3] Murty,K.S. Dynamic response of lattice towers and guyed masts [M]. ASCE, 2002.
[4] White, H.B. Cross Suspension System-Kemano Kitimat Transmission Line [J].Engineering Journal, 1956, 39(7):901-926.
[5] Leon Kempner, Jr., Strether Smith.Cross-rope Transmission Tower-line Dynamic Analysis [J]. Journal of Structural Engineering ASCE, 1984, 110(6):1321-1335.
[6] Sparling,B.F. The dynamic behavior of guys and guyed masts in turbulent winds [D]. University of Western Ontario, London, Ontario, 1995.
[7] Yohanna M.F. Wahba, Murty K.S. Madugula, and Gerard R.Monforton. Effect of guy initial tension on design of guyed antenna towers [J]. Canadian Journal of Civil Engineering, 1996, 23(2):457-463.
[8] Design of Guyed Electrical Transmission Structures [M]. ASCE Manuals and Reports on Engineering Practice No.91, New York, 1997:49-51.
[9] Nabil Ben Kahla. Nonlinear dynamic response of a guyed tower to a sudden guy rupture. Engineering Structures, 1997, 19(11): 879-890.
[10] Nabil Ben Kahla.Response of a guyed tower to a guy ruptures under no wind pressure [J]. Engineering Structures, 2000, 22(6):699-706.
[11] Bruce F. Sparling and Alan G. Davenport. Nonlinear dynamic behavior of guy cables in turbulent winds [J]. Canadian Journal of Civil Engineering, 2001, 28(1):98-110.
[12] Preidikman S., Massa J., and Roccia B. Análisis dinámico de mástiles arriostrados. Rev. Int. de Desastres Naturales, Accidentes e Infraestructura Civil, 2006 , 6(1):85–102.
[13] Ballaben J., Guzman M., and Rosales M. Parametric studies of guyed towers under wind and seismic loads. Asociación Argentina de Mecánica Computacional, 2011, 30:1019-1032.
[14] A. Carrasco-Luzardo, V. E. Parnas and P. Martin-Rodriguez. Guy Tension Influence on the Structural Behavior of a Guyed Mast [J]. The International Association for Shell and Spatial Structures, 2012, 53(2):111-116.
[15]郭 峰,李 晨,施菁华等.直流输电线路双柱悬索拉线塔设计 [J].电力建设,2012,  5(33):78-81.
Guo Feng, Li Chen, Shi Jing-hua, et, al. Design for double column suspended guyed tower in DC transmission lines [J]. Electric Power Construction, 2012, 33(5):78-81. (in Chinese)
[16]甘凤林,李小磊,高 黔.拉线初始预应力分布对拉线杆塔受力影响的研究[J].广东电力,2010,23(9):7-10.
Gan Feng-lin, Li Xiao-lei, Gao Qian. Influence of Initial Prestress Distribution of Guy for Mechanics of Guyed Transmission Tower [J].Guang Dong Eleectric Power, 2010, 23(9):7-10.
[17] W.E.Lin, E.Savory, R.P.Mclntyre, et, al. The response of an overhead electrical power transmission line to two types of wind forcing  [J]. Journal of wind engineering and industrial aerodynamics. 2012, 100(1):58-69.
[18]谢 强, 管 政, 严承涌. 1000kV输电塔横风向振动风洞试验研究 [J]. 电网技术, 2011, 35(5):21-26.
Xie Qiang, Guan Zheng, Yan Cheng-yong. Wind tunnel test on across-wind vibration of 1000kV UHV transmission tower [J]. Power System Technology, 2011, 35(5):21-26(in Chinese).
[19]谢 强, 杨 洁.输电塔线耦联体系风洞试验及数值模拟研究 [J]. 电网技术,2013,37(5):1237-1243.
Xie Qiang,Yang Jie.Wind tunnel and numerical simulation on transmission tower-line coupling system[J].Power System Technology,2013,37(5):1237-1243(in Chinese).
[20] Loredo-Souza A M, Davenport A G. A novel approach for wind tunnel modeling of transmission lines [J]. Journal of wind engineering and industrial aerodynamics. 2001, 89:1017-1029.
[21] 李正良,肖正直,韩 枫等.1000kV汉江大跨越特高压输电塔线体系气动弹性模型的设计与风洞试验[J].电网技术,2008, 32(12):1-5.
Li Zhengliang, Xiao Zhengzhi, Han Feng, et al. Aeroelastic model design and wind tunnel tests of 1000kV Hanjiang long span transmission line system [J]. Power System Technology, 2008, 32(12):1-5. (in Chinese)
[22] GB 50009-2012, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012.
GB 50009-2012, Load code for the design of buildingstructures [S]. Beijing: China Architecture Industry Press, 2012. (in Chinese)
[23] DLT 5154-2002, 架空送电线路杆塔结构设计技术规定[S]. 北京: 中国电力出版社, 2002.
DLT 5154-2002, Technical regulation of design for tower and pole structures of overhead transmission line [S]. Beijing: China Electric Power Press, 2002. (in Chinese).

PDF(1964 KB)

Accesses

Citation

Detail

段落导航
相关文章

/