考虑功能梯度材料结构宏观材料属性的连续空间变化,推导了一种任意四边形形状的Gauss-Lobatto-Legendre时域谱单元。分别采用均匀化模型、分层离散模型和连续材料模型三种建模方法描述材料的梯度变化特性。研究了二维功能梯度结构在中心冲击载荷下的波动力学响应,将数值模拟结果与文献理论解进行了对比,验证了单元的有效性,研究了高频导波在二维功能梯度材料结构中的传播特性。计算结果表明:均匀化模型无法准确描述功能梯度材料结构中的波场行为;采用分层离散模型计算的波响应幅值、相位和相速度均与采用连续材料模型计算的结果有差异,采用连续材料模型能更好模拟功能材料宏观材料性质空间连续变化的特征。功能梯度材料中对称模式纵波、反对称模式横波的相速度频散现象不明显,对称模式横波的相速度频散明显。
Abstract
A new arbitrary quadrangular Gauss-Lobatto-Legendre time-domain spectral element was established, considering spatially continuous variation of material property of functionally graded material structures in the macroscopic sense. The variation of material property was modeled by the uniformed model, layer-wise model and continuous material model, respectively. Wave dynamic response in functionally graded structure under a central impact load was studied. The proposed element was verified through comparisons to the analytical solution of reference literature. Characteristics of high-frequency guided wave propagation in planar functionally graded material structures were investigated. Numerical Results demonstrate that uniformed model fails to describe the wave field behavior in the graded material structure. There are obvious differences about Amplitude of wave response, phase and phase velocity calculated by layer-wise model and continuous model. Continuous model can simulate the spatially variation of material property better. Symmetry longitudinal wave and asymmetry transverse wave doesn’t disperse obviously, while symmetry transverse wave disperse obviously.
关键词
功能梯度材料 /
弹性波 /
谱单元 /
时域响应
{{custom_keyword}} /
Key words
functionally graded material, elastic wave, spectral element, time-domain response /
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 仲政,吴林志,陈伟球. 功能梯度材料与结构的若干力学问题研究进展[J]. 力学进展, 2010, 40(5): 528-541.
Zhong Z, Wu L Z, Cheng W Q. Progress in the study on mechanics problems of functionally graded materials and structures[J]. Adv Mech, 2010, 40: 528-541.
[2] Sun D, Luo S N. Wave propagation and transient response of a FGM plate under a point impact load based on higher-order shear deformation theory[J]. Composite Structures, 2011, 93(5): 1474-1484.
[3] 孙丹, 罗松南. 四边固支功能梯度板中波的传播[J]. 振动与冲击, 2011, 30(4): 244-247.
Sun D, Luo S N. Wave propagation in a rectangular functionally graded material plate with clamped supports[J]. Journal of Vibration and Shock, 2011, 4: 052.
[4] Lefebvre J E, Zhang V, Gazalet J, et al. Acoustic wave propagation in continuous functionally graded plates: an extension of the Legendre polynomial approach[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 2001, 48(5): 1332-1340.
[5] Cao X, Jin F, Jeon I. Calculation of propagation properties of Lamb waves in a functionally graded material (FGM) plate by power series technique[J]. NDT & E International, 2011, 44(1): 84-92.
[6] Patera A T. A spectral element method for fluid dynamics: laminar flow in a channel expansion[J]. Journal of computational Physics, 1984, 54(3): 468-488.
[7] Palacz M, Krawczuk M. Analysis of longitudinal wave propagation in a cracked rod by the spectral element method[J]. Computers & structures, 2002, 80(24): 1809-1816.
[8] Kudela P, Krawczuk M, Ostachowicz W. Wave propagation modelling in 1D structures using spectral finite elements[J]. Journal of Sound and Vibration, 2007, 300(1): 88-100.
[9] Komatitsch D, Martin R, Tromp J, et al. Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles[J]. Journal of Computational Acoustics, 2001, 9(02): 703-718.
[10] Peng H, Meng G, Li F. Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection[J]. Journal of Sound and Vibration, 2009, 320(4): 942-954.
[11] Chakraborty A, Gopalakrishnan S. A spectrally formulated finite element for wave propagation analysis in functionally graded beams[J]. International Journal of Solids and Structures, 2003, 40(10): 2421-2448.
[12] Chakraborty A, Gopalakrishnan S. A higher-order spectral element for wave propagation analysis in functionally graded materials[J]. Acta mechanica, 2004, 172(1-2): 17-43.
[13] Hedayatrasa S, Bui T Q, Zhang C, et al. Numerical modeling of wave propagation in functionally graded materials using time-domain spectral Chebyshev elements[J]. Journal of Computational Physics, 2014, 258: 381-404.
[14] Chen W Q, Wang H M, Bao R H. On calculating dispersion curves of waves in a functionally graded elastic plate[J]. Composite structures, 2007, 81(2): 233-242.
[15] Mažeika L, Draudvilienė L, Žukauskas E. Influence of the dispersion on measurement of phase and group velocities of Lamb waves[J]. Ultrasound, 2009, 64(4): 18-21.
[16] Mažeika L, Draudvilienė L. Analysis of the zero-crossing technique in relation to measurements of phase velocities of the Lamb waves[J]. Ultrasound, 2010, 66(2): 7-12.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}