针对风电叶片单点疲劳加载试验过程中的振动自同步现象,基于拉格朗日方程推导出单加载源与风电叶片振动过程中的数学模型,得到振动自同步现象的影响因素,并利用相平面法将其转化为自治系统。利用Matlab/Simulink建立仿真模型对振动自同步过程进行数值仿真,得到不同初始相位差作用下的振动自同步规律。最后搭建了一套风电叶片单点疲劳加载试验系统,以此来检验数学模型与仿真模型的正确性。试验结果表明,在加载源回转驱动频率与叶片固有频率一致前提下,当两者的初始相位差小于 时,两者能产生振动自同步现象,表现为叶片振幅最大且稳定;初始相位差为 时,两者能产生较弱的振动自同步现象,叶片振幅在波动一段时间后逐渐趋于稳定,但是幅值较小;初始相位差为 时,两者不能产生振动自同步,表现为叶片振幅不稳定且出现絮乱。以上结论为后续的疲劳加载试验的控制算法制定提供了理论依据。
Abstract
For the self-synchronous vibration phenomenon in the process of the single-point fatigue loading test of wind turbine blade, the mathematical model of the single-point fatigue loading system based on LaGrange equation was established and the influence factors of the self-synchronous vibration phenomenon were obtained. Applying the phase plane method, the vibration system is converted into an autonomous system. Then the vibration system’s simulation model was built with Matlab/Simulink and the basic law of the self-synchronous vibration phenomenon in different initial phase was obtained. At last, a set of single-point fatigue loading test equipment which was used to test the accuracy of the mathematical model and simulation model was set up. The experimental results shows that under the premise of load source rotary drive frequency the same as the blade’s natural frequency, the self-synchronous vibration phenomenon occurs when the initial phase difference is less than and in this state, the amplitude of blade is the largest and constant; when the initial phase difference is , the self-synchronous vibration phenomenon is weak, and the amplitude of the blade gradually stabilizes at a low value after a period of time; when the initial phase difference is , the self-synchronous vibration phenomenon do not occur and the amplitude of blade is disorder. The above conclusion provide theoretical basis for the control algorithm of fatigue loading test.
关键词
关键词:风电叶片 /
疲劳加载 /
振动自同步 /
加载试验
{{custom_keyword}} /
Key words
Wind turbine blade /
Fatigue loading /
Vibration self-synchronous /
Loading /
testing
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Anderson R G, Lorenz R. Web Machine Coordinated Motion Control Via Electronic Line-shafting [J].IEEE Transactions on Industry Application,2001,37(1):247-254.
[2] 李小号,刘杰,刘劲涛. 单质体非线性系统谐波锐共振的谐振同步分析[J].机械工程学报,2010,46(1): 86-91.
Li Xiaohao, Liu Jie, Liu Jintao. Analysis of harmonic oscillation synchronization for the single-mass nonlinear system under harmonic wave sharp resonance condition[J]. Journal of Mechanical Engineering, 2010,46(1): 86-91.
[3] Abdelghani Z D, Dane Q. Resonance Capture in aDampedThree Degree of Freedom System: Experimental and Analytical Comparison [J]. International Journal of Non-Linear Mechanics,2009,39:1128-1142.
[4] Cusumano P, Chatterjee A. A Dynamical Systems Approach to Damage Evolution Tracking. Part1: Description and Experimental Application [J]. Journal of Vibration and Acoustics, 2012,124(2): 250-257.
[5] Boccaletti S,Bragard J,Arecchi F T. Synchronization in Non-identicalExtended Systems[J]. Physical Review Letters, 2013, 16(3):287-294.
[6] Suykens J A,Gestel T V, Brabanter J D. Least Squares Support Vector Machine[M]. Singapore: World Scientific,2009,8(7):134-141.
[7] Zhang T X, Wen B C, Fan J. Study on Synchronization of Two Eccentric Rotors Driven by Hydraulic Motors in One VibratingSystems[J]. Shock and Vibration,2011,4(6): 305-310.
[8] 李小号,刘杰,刘劲涛,李允公.单质体非线性系统的锐共振振动自同步研究[J].工程设计学报,2012,15(6):418-421.
Li Xiaohao, Liu Jie, Liu Jintao, et al. Research on vibration synchronization of single-mass nonlinear system under sharp resonance condition[J]. Journal of Engineering Design, 2012,15(6):418-421.
[9] 韩清凯,杨晓光,秦朝烨,等.激振器参数对振动自同步振动系统的影响[J]. 东北大学学报(自然科学版),2013,28(7):1009-1013.
Han Qingkai, Yang Xiaoguang, Qin Zhaoye, et al. Effects of Exciter Parameters on Self-Synchronous Vibration System[J]. Journal of Northeastern University (Natural Science), 2013,28(7):1009-1013.
[10] 张楠,候晓林,闻邦椿.偏移式自同步振动机的同步特性[J].东北大学学报(自然科学版),2009, 30(9): 1302-1309.
Zhang Nan, Hou Xiaolin, Wen Bangchun. Characteristics of Synchronization for Self-Synchronous Vibration Machine with Center of Mass Deviated Vibrator[J]. Journal of Northeastern University (Natural Science), 2009, 30(9): 1302-1309.
[11] 来鑫,乌建中,王伟达,阮博.多锤联动系统的振动耦合理
论及试验研究[J].机械工程学报,2012,48(3):108-114.
Lai Xin, Wu Jianzhong, Wang Weida, et al. Theoretical and Experimental Study on Electromechanical Coupling of Joint Pile-hammer System[J]. Journal of Mechanical Engineering, 2012,48(3):108-114.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}