基于RKDG方法的船体板架爆炸冲击响应数值模拟

于福临,郭君,姚熊亮,任少飞

振动与冲击 ›› 2015, Vol. 34 ›› Issue (13) : 60-65.

PDF(2138 KB)
PDF(2138 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (13) : 60-65.
论文

基于RKDG方法的船体板架爆炸冲击响应数值模拟

  • 于福临,郭君,姚熊亮,任少飞
作者信息 +

Numerical Simulation of Hull Grillage Response Under Blast Loading Based on the RKDG Method

  • YU Fulin   GUO Jun   YAO Xiongliang   REN Shaofei
Author information +
文章历史 +

摘要

基于欧拉流体力学方程组,对方程组分别进行间断迦辽金法空间离散和龙格库塔法时间离散,采用RKDG方法建立数值模型,模拟自由场空中爆炸冲击波载荷特性,并与经验公式对比,对RKDG计算程序进行验证。针对强间断性的空中爆炸冲击波与周围低压空气耦合特性问题,给出了流场密度和压力分布规律。最后编制计算程序,结合大型非线性有限元软件LS-DYNA,模拟板架结构在空中爆炸载荷作用下的变形和响应特征,计算发现:板架沿着T型材出现塑性变形,板格呈现局部隆起的碟形变形区,响应与距离爆心距离成反比。

Abstract

In order to simulate the characteristics of far field air explosion shock load, the discretizations of Euler equations were solved by RKDG method. The numerical model was established and far field air explosion shock wave load characteristics were simulated. The results were compared with the empirical formula. The density and pressure distribution of high pressure shock wave with large discontinuity were simulated with Fortran program. Combined with LS-DYNA, impulse responses of hull plates under shock load are simulated. The results indicate that the plastic deformed shape profiles along the stiffener direction, and the plate shows local dishing deformation, and the response is inversely proportional to the distance from the explosion center.

关键词

间断伽辽金 / 空中爆炸 / 耦合特性 / 数值模拟

引用本文

导出引用
于福临,郭君,姚熊亮,任少飞. 基于RKDG方法的船体板架爆炸冲击响应数值模拟[J]. 振动与冲击, 2015, 34(13): 60-65
YU Fulin GUO Jun YAO Xiongliang REN Shaofei. Numerical Simulation of Hull Grillage Response Under Blast Loading Based on the RKDG Method[J]. Journal of Vibration and Shock, 2015, 34(13): 60-65

参考文献

[1] Reed W H, Hill T R. Triangular mesh methods for the neutron transport equation [J]. Los Alamos Report LA-UR-73-479, 1973.
[2] Cockburn B, Shu C W. TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws II: General Framework[J]. Mathematics of Computation, 1989, 52(186): 411-435.
[3] Jeong W, Seong J. Comparison of effects on technical variances of computational fluid dynamics (CFD) software based on finite element and finite volume methods[J]. International Journal of Mechanical Sciences, 2014, 78: 19-26.
[4] Zhu J, Liu T, Qiu J, et al. RKDG methods with WENO limiters for unsteady cavitating flow[J]. Computers & Fluids, 2012, 57: 52-65.
[5] Susanto A, Ivan L, De Sterck H, et al. High-order central ENO finite-volume scheme for ideal MHD[J]. Journal of Computational Physics, 2013, 250: 141-164.
[6] Osher S, Fedkiw R P. Level set methods: an overview and some recent results[J]. Journal of Computational physics, 2001, 169(2): 463-502.
[7] Cheng Y, Gamba I M, Majorana A, et al. Discontinuous galerkin solver for Boltzmann-poisson transients[J]. Journal of Computational Electronics, 2008, 7(3): 119-123.
[8] Billet G, Ryan J, Borrel M. A Runge Kutta Discontinuous Galerkin approach to solve reactive flows on conforming hybrid grids: the parabolic and source operators[J]. Computers & Fluids, 2014, 95: 98-115.
[9] Wang Z J. High-order computational fluid dynamics tools for aircraft design[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2014, 372(2022): 20130318..
[10] Du J, Shu C W, Zhang M. A simple weighted essentially non-oscillatory limiter for the correction procedure via reconstruction (CPR) framework[J]. Applied Numerical Mathematics, 2014,279:1-26.
[11] Bo W, Grove J W. A volume of fluid method based ghost fluid method for compressible multi-fluid flows[J]. Computers & Fluids, 2014, 90: 113-122.
[12] Pesch L , van der Vegt J J W. A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids [J] Journal of Computational Physics, 2008 , 227 : 5426 - 5446.
[13] Henrych J, Major R. The dynamics of explosion and its use[M]. Amsterdam: Elsevier, 1979.
[14] 陈长海,朱锡,侯海量等.近距空爆载荷作用下固支方板的变形及破坏模式[J]. 爆炸与冲击, 2008, 32(4): 368-375.
CHEN Changhai, ZHU Xi, HOU Hailiang, et al. Deformation and failure modes of clamped squared plates under close-range air blast loads[J]. Explosion and Shock Waves, 2008, 32(4): 368-375.
[15] Langdon G S, Yuen S, Nurick G N. Experimental and numerical studies on the response of quadrangular stiffened plates. Part II: localised blast loading[J]. International Journal of Impact Engineering, 2005, 31(1): 85-111.
 
 

PDF(2138 KB)

Accesses

Citation

Detail

段落导航
相关文章

/