基于多尺度正交PCA-LPP流形学习算法的故障特征增强方法

张晓涛,唐力伟,王平,邓士杰

振动与冲击 ›› 2015, Vol. 34 ›› Issue (13) : 66-70.

PDF(1532 KB)
PDF(1532 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (13) : 66-70.
论文

基于多尺度正交PCA-LPP流形学习算法的故障特征增强方法

  • 张晓涛,唐力伟,王平,邓士杰
作者信息 +

Fault feature enhancement method based on multiscale orthogonal PCA-LPP manifold learning algorithm

  • Zhang Xiaotao, Tang Liwei, Wang Ping, Deng Shijie
Author information +
文章历史 +

摘要

针对齿轮箱故障声发射信号特征增强问题,提出一种多尺度正交PCA-LPP非线性流形学习特征增强方法,兼顾PCA的全局方差增大变换特性以及LPP的局部非线性特征保持特性,并通过正交化消除投影分量间的冗余信息,使处理之后的齿轮箱故障信号内含的故障特征得到增强,一方面增强后信号包络谱中的故障谱线清晰明显,另一方面增强后信号以小波包能量熵为特征量,故障类型的辨识率显著提高,可以达到93.75%。

Abstract

Aiming at the feature enhancement problem of gearbox fault acoustic emission signals, a novel method based on multiscale orthogonal PCA-LPP manifold learning algorithm is proposed in this paper by considering the global distribution variance enhancement of PCA and the local nonlinear characteristics enhancement of LPP, and the redundant information between projection components were eliminated by orthogonal treatment. In the processing results of gearbox fault acoustic emission signals, on the one hand fault lines in envelope spectrum was more clearly, on the other hand, the eigenvectors of fault signals was constructed by wavelet packet energy entropy, the fault identification rate was increased obviously, and it could reach 93.75%.

关键词

局部保持投影 / 主元分析 / 多尺度分析 / 正交化 / 特征增强

Key words

locality preserving projection / principal component analysis / multiscale analysis / orthogonal / fault feature enhancement

引用本文

导出引用
张晓涛,唐力伟,王平,邓士杰. 基于多尺度正交PCA-LPP流形学习算法的故障特征增强方法[J]. 振动与冲击, 2015, 34(13): 66-70
Zhang Xiaotao, Tang Liwei, Wang Ping, Deng Shijie. Fault feature enhancement method based on multiscale orthogonal PCA-LPP manifold learning algorithm[J]. Journal of Vibration and Shock, 2015, 34(13): 66-70

参考文献

1] 李晗,萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策. 2011.26(1):1-9.
Li Han, Xiao Deyun. Survey on data driven fault diagnosis methods[J]. Control and Decision. 2011.26(1): 1-9.
[2] 李宏坤,赵长生,周帅等. 基于小波包-坐标变换的滚动轴承故障特征增强方法[J]. 机械工程学报. 2011.47(19):74-79.
Li Hongkun, Zhao Changsheng, Zhou Shuai, et al. Fault feature enhancement method for rolling bearing based on wavelet packet-coordinate transformation[J]. Journal of Mechanical Engineering. 2011.47(19):74-79.
[3] 尹刚,张英堂,李志宁等. 基于MSPCA的缸盖振动信号特征增强方法研究[J]. 振动与冲击. 2013.32(6): 143-147.
Yin Gang, Zhang Yingtang, Li Zhining, et al. Fault feature enhancement method for cylinder head vibration signal based on multiscal principal component analysis[J]. Journal of Vibration and Shock. 2013.32(6): 143-147.
[4] 赵振华,郝晓弘. 局部保持鉴别投影及其在人脸识别中的应用[J]. 电子与信息学报. 2013.35(2):463-466.
ZHAO Zhenhua, HAO Xiaohong. Linear Locality Preserving and Discriminating Projection for Face Recognition[J]. Journal of Electronics & Information Technology. 2013.35(2):463-466.
[5] X F He, P Niyogi. Locality preserving projections[A]. Neural Information Processing Systems16[C]. Vancouver. MIT Press, 2004.153-160.
[6] 王健,冯健,韩志艳. 基于流形学习的局部保持PCA算法在故障检测中的应用[J]. 控制与决策. 2013.28(5):684.
Wang Jian, Feng Jian, Han Zhiyan. Locally preserving PCA method based on manifold learning and its application in fault detection[J]. Control and Decision. 2013.28(5):684.
[7] Zhenhua Zhang, Xinzhong Zhu, et al. Image Retrieval Based on PCA-LPP[A]. 2011 10th International Symposium on Distributed Computing and Applications to Business, Engineering and Science[C]. Wuxi, Jiangsu, Chian. 2011: 230-233
 [8] 李锋,汤宝平,宋涛等. 归一Laplacian矩阵有监督最优局部保持映射故障辨识[J]. 机械工程学报. 2013.49(13): 100-106.
LI Feng, TANG Baoping, SONG Tao, etal. Fault Identification Method Based on Normalized Laplacian-based Supervised Optimal Locality Preserving Projection[J]. Journal of mechanical engineering. 2013.49(13):100-106.
[9] Bo Yang, Songcan Chen. Sample-dependent graph construction with application to dimensionality reduction[J]. Neurocomputing. 2010.74(5):301-314.
[10] 袁暋,程雷,朱然刚等. 一种新的基于MMC和LSE的监督流形学习算法[J]. 自动化学报. 2013.39(12): 2076-2079.
YUAN Min, CHENG Lei, ZHU Rangang, etal. A new supervised manifold learning algorithm based on MMC and LSE[J]. ACTA AUTOMATICA SINICA. 2013. 39(12):2076-2079.
[11] 宋涛,汤宝平,李锋. 基于流形学习和K-最近邻分类器的旋转机械故障诊断方法[J]. 振动与冲击. 2013.32(5): 149-153.
SONG Tao, TANG Baoping, LI Feng. Fault diagnosis method for rotating machinery based on manifold learning and K-nearest neighbor classifier[J]. Journal of vibration and shock. 2013.32(5):149-153.
[12] Manish M, Henry, Joe Q S, et al. Multivariate process monitoring and fault diagnosis by multi-scale PCA[J]. Computers and Chemical Engineering, 2002,26(9):1281- 1293.
[13] 张赟,李本威. 基于最大方差展开的非线性信号降噪方法及其在故障诊断中的应用[J]. 中国科学. 2010.40(8): 940-945.
Zhang Bin, Li Benwei. Noise reduction method for nonli204near signal based on maximum variance unfolding and its application to fault diagnosis[J]. Sci China Tech Sci. 2010.40(8):940-945.
[14] 李城梁,王仲生,姜洪开等. 自适应Hessian LLE在机械故障特征提取中的应用[J]. 振动工程学报. 2013.26(5):758-763.
LI Chengliang, WANG Zhongsheng, JIANG Hongkai, etal. Adaptive Hessian LLE in mechanical fault feature extraction[J]. Journal of vibration engineering. 2013.26(5): 758-763.

PDF(1532 KB)

Accesses

Citation

Detail

段落导航
相关文章

/