[1] 胡金海,余治国,翟旭升,彭靖波,任立通. 基于改进D-S证据理论的航空发动机转子故障决策融合诊断研究[J]. 航空学报, 2014, 35(2): 436-441.
(HU Jinhai, YU Zhiguo, ZHAI Xusheng, PENG Jingbo, REN Litong. Research of Decision Fusion Diagnosis of Aero-engine Rotor Fault Based on Improved D-S Theory[J]. Acta Aeronautica Et Astronautica Sinica, 2014, 35(2): 436-441.)
[2] 张 恒,赵荣珍.故障特征选择与特征信息融合的加权KPCA方法研究[J].振动与冲击,2014,33(9):89-93.
(ZHANG Heng, ZHAO Rong-zhen. Weighted KPCA based on fault feature selection and feature information fusion[J]. Journal of Vibration and Shock, 2014, 33(9): 89-93.)
[3] 蒋玲莉,刘义伦,李学军,陈安华. 基于SVM与多振动信息融合的齿轮故障诊断[J].中南大学学报(自然科学版), 2010,41(6): 2184-2188.
(JIANG Ling-li , LIU Yi-lun, LI Xue-jun, CHEN An-hua. Gear fault diagnosis based on SVM and multi-sensor information fusion[J]. Journal of Central South University (Science and Technology), 2010, 41(6): 2184-2188.)
[4] 王维刚,刘占生. 多目标粒子群优化的支持向量机及其在齿轮故障诊断中的应用[J]. 振动工程学报, 2013,26(5): 743-749.
(WANG Wei-gang, LIU Zhan-sheng. Support vector machine optimized by multi-objective particle searm and application in gear fault diagnosis[J]. Journal of Vibration Engineering, 2013, 26(5): 743-749.)
[5] 李巍华, 张盛刚. 基于改进证据理论及多神经网络融合的故障分类[J].机械工程学报, 2010, 46(9): 93−99.
(LI Weihua, ZHANG Shenggang. Fault Classification Based on Improved Evidence Theory and Multiple Neural Network Fusion[J]. Chinese Journal of Mechanical Engineering, 2010, 46(9): 93−99.)
[6] 韩德强, 杨艺, 韩崇昭. DS 证据理论研究进展及相关问题探讨[J]. 控制与决策, 2014, 29(1): 1-8.
(HAN De-qiang, YANG Yi, HAN Chong-zhao. Advances in DS evidence theory and related discussions [J]. Control and Decision, 2014, 29(1): 1-8.)
[7] 姜万录,吴胜强.基于SVM和证据理论的多数据融合故障诊断方法 [J].仪器仪表学报,2010,31(8):1738-1743.
(Jiag Wanlu, Wu Shengqiang. Multi-data fusion fault diagnosis method based on SVM and evidence theory[J]. Chinese Journal of Scientific Instrument, 2010, 31(8): 1738-1743.)
[8] 车红昆,吕福在,项占琴.多特征SVM-DS融合决策的缺陷识别[J].机械工程学报,2010,46(16): 101-105.
(CHE Hongkun , LÜ Fuzai , XIANG Zhanqin. Defects Identification by SVM-DS Fusion Decision-making with Multiple Features[J]. Journal of Mechanical Engineering, 2010, 46(16): 101-105.)
[9] Denoux T. Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence[J]. Artificial Intelligence, 2008, 172(2/3): 234-264.
[10] Chao F, Yang S L. The combination of dependencebased interval-valued evidential reasoning approach with balanced scorecard for performance assessment[J]. Expert Systems with Applications, 2012, 39(3): 3717-3730.
[11] 韩 东,李洪儒,许葆华.基于广义证据一致量和信息量因子的证据组合规则[J].仪器仪表学报,2010,31(12):2724-2727.
(Han Dong, L iH ong ru, Xu Baohu. Combination rule of evidence based on general evidence consistency degree and information content factor[J]. Chinese Journal of Scientific Instrument, 2010, 31(12): 2724-2727.)
[12] Jousselme A L, Maupin P. Distances in evidence theory: Comprehensive survey and generalizations[J]. Int J of Approximate Reasoning, 2012, 53(2): 118-145.
[13] 张锟, 张昌芳, 李杰. 基于新冲突度量的属性信息相关算法 [J]. 控制与决策, 2011, 26(4): 601-605.
(ZHANG Kun, ZHANG Chang-fang, LI Jie. Attribute information correlation algorithm based on new conflict Measure[J]. Control and Decision, 2011,26(4): 601-605.)
[14] Platt J. Probabilistic outputs for Support Vector Machines and Comparison to Regularized Likelihood Method[C]. Advance in large margin classifier. Cambridge: MIT Press, 2000: 61-74.
[15] LIN H, LIN C, WENG R C. A note on platt’s probabilistic outputs for support vector machines[J]. Machine Learning , 2007, 68(3): 267-276.
[16] 雷蕾,王晓丹,邢雅琼,毕凯.结合SVM和DS证据理论的多极化HRRP分类研究[J].控制与决策,2013,28(6):861-866.
(LEI Lei, WANG Xiao-dan, XING Ya-qiong, BI Kai. Multi-polarized HRRP classification by SVM and DS evidence theory [J]. Control and Decision, 2013, 28(6): 861-866.)