针对尺度对Morlet小波变换结果具有决定性影响的问题,提出一种奇异值能量谱方法,实现Morlet小波尺度的优化并提取故障特征。首先采用Shannon熵的方法优化Morlet小波中心频率与带宽参数,针对Shannon熵计算结果中无明确极小值点的情况,通过比较不同参数下的小波变换结果,得到了最优小波参数。然后,根据实际频率与尺度的对应关系,选择有效尺度范围进行连续Morlet小波变换。最后,将每一尺度下的小波系数进行奇异值分解并计算奇异值能量谱,通过选择能量谱峰值来确定最优尺度参数,实现对故障特征的提取。对仿真信号和实际轴承信号的分析表明,此方法克服了以往方法的缺点,在低信噪比时具有良好的故障特征提取效果。
Abstract
Acccording to the fact that the scale has a tremendous impact on the result of Morlet wavelet transform, a method based on energy spectrum of singular value is proposed to optimize Morlet wavelet scale and extract fault feature. Firstly, Shannon entropy is used to optimize the central frequency and bandwidth parameter of the Morlet wavelet. According to the situation that there is no clear minimum value in the calculation result of Shannon entropy, Morlet wavelet decomposition results with different parameters are compared to obtain the optimal wavelet parameter. Then, the effective scale ranges are chosen to do Morlet wavelet transform according to the relationship between practical frequency and wavelet scale parameter. Finally, the wavelet coefficients at each scale are decomposed into singular values and the energy spectrum of singular value is calculated. The optimal scale is obtained by choosing the maximum in energy spectrum, and then the fault feature can be extracted. The experimental results and analysis results of rolling bearing signals show that the proposed method overcomes the disadvantages of previous methods and has good effect in fault feature extraction when signal-to-noise ratio(SNR) is low.
关键词
Morlet小波 /
Shannon熵 /
奇异值能量谱 /
特征提取。
{{custom_keyword}} /
Key words
Morlet wavelet /
Shannon entropy /
Energy spectrum of singular value /
Feature extraction.
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SELVAN S,RAMAKRISHNAN S.SVD-based modeling for image texture classification using wavelet transformationp[J].IEEE Transactions on Image Processing,2007,16(11):2688-2696.
[2] XIE H B,ZHENG Y P,GUO J Y. Classification of the mechanomyogram signal using a wavelet packet transform and singular value decomposition for multifunction prosthesis control[J].Physiological Measurement,2009,30(5):441-457.
[3] 赵学智,叶邦彦,陈统坚.基于小波-奇异值分解差分谱的弱故障特征提取方法[J].机械工程学报,2012,48(7):37-47.
ZHAO Xue-zhi,YE Bang-yan,CHEN Tong-jian.Extraction method of faint fault feature based on wavelet-SVD difference spectrum[J].Journal of Mechanical Engineering.2012,48(7):37-47.
[4] 梁霖,徐光华,侯成刚.基于奇异值分解的连续小波消噪方法[J].西安交通大学学报,2004,38(9):904-908.
LIANG Lin,XU Guang-hua,HOU Cheng-gang.Continuous wavelet transform denoising method based on singular value decomposition[J].Journal of Xi’an Jiaotong
University,2003,38(9):904-908.
[5] JIN L,LIANGSHENG Q U.Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis[J].Sound and Vibration,2000,234(1):135-148.
[6] 滕军,朱焰煌,周峰,等.基于复Morlet小波变换的大跨空间结构模态参数识别研究[J].振动与冲击,2009,28(8):25-29.
TENG Jun,ZHU Yan-huang,ZHOU Feng.Modal parameters identification of large-span spatial structures based on complex morlet wavelet transform[J].Journal of Vibration and Shock, 2009,28(8):25-29.
[7] 张永波,郭海燕,孟凡顺.基于小波变换的顶张力立管涡激振动规律实验研究[J].振动与冲击,2011,30 (2):149-154.
ZHANG Yong-bo ,GUO Hai-yan, MENG Fan-shun. Model tests for vortex-induced vibration of a top tension riser based on wavelet transformation [J]. Journal of Vibration and Shock,2011,30( 2) : 149-154.
[8] 孙鹏,丁幼亮,张劲泉,等.基于Morlet小波变换的结构密集模态参数识别[J].东南大学学报:自然科学版,2012,42(2):339-345.
SUN Peng,DING You-liang,ZHANG Jin-quan,et al.Modal identification of closely spaced modes based on Morlet wavelet transform[J].Journal of Southeast University:Natural Science Edition,2012,42(2):339-345.
[9] 张强,吴庆鸣.小波变换与自助理论在模态参数辨识中的应用研究[J].振动与冲击,2009,28(5):131-136.
ZHANG Qiang, WUQing-ming. Modal parameters identification based on wavelet transform and bootstrap theory[J]. Journal of Vibration and Shock,2009,28(5):131-136.
[10] 崔玲丽,康晨晖,胥永刚,等. 滚动轴承早期冲击性故障特征提取的综合算法研究[J]. 仪器仪表学报,
2010,31( 11) : 2422-2427.
CUI Ling-li,KANG Chen-hui,XU Yong-gang,et al. Integrated algorithm research on early impactive fault feature extraction of rolling bearings[J].Chinese Journal of Scientific Instrument,2010,31( 11) : 2422-2427.
[11] 张锐戈,谭永红.基于最优 Morlet 小波和隐马尔可夫模型的轴承故障诊断[J].振动与冲击,2012,31(12):5-8.
ZHANG Ge-rui ,TAN Yong-hong.Fault diagnosis of rolling element bearings based on optimal Morlet wavelet and hidden markov model[J].Journal of Vibration and Shock,2012,31(12):5-8.
[12] 蒋永华,汤宝平,董绍江.自适应Morlet小波降噪方法及在轴承故障特征提取中的应用[J].仪器仪表学报,2010,31(12):2712-2717.
JIANG Yong-hua,TANG Bao-ping,DONG Shao-jiang.Denoising method based on adaptive Morlet wavelet and its application in rolling bearing fault feature extration[J].Chinese Journal of Scientific Instrument,2010,31(12):2712-2717.
[13] 李国宾,关德林,李廷举.基于小波包变换和奇异值分解的柴油机振动信号特征提取研究[J]. 振动与冲击,2011,30( 8):149-152.
LI Guo-bin,GUAN De-lin,LI Ting-ju.Feature extraction of diesel engine vibration signal based on wavelet packet transform and singularity value decomposition[J]. Journal of Vibration and Shock,2011,30 ( 8) : 149 - 152.
[14]张 波,李健君.基于 Hankel 矩阵与奇异值分解(SVD)的滤波方法以及在飞机颤振试验数据预处理中的应用
[J].振动与冲击,2009,28(2): 162 -167.
ZHANG Bo,LI Jian-jun.Denoising method based on Hankel matrix and SVD and its application in flight flutter testing data preprocessing[J].Journal of Vibration and Shock ,2009,28(2):162-167.
[15] 徐 锋,刘云飞. 基于中值滤波 - SVD 和 EMD 的声发射信号特征提取[J]. 仪器仪表学报,2011,32 (12) : 2712-2719.
XU Feng,LIU Yun-fei.Feature extraction of acoustic emission signals based on median filter -SVD and EMD[J].Chinese Journal of Scientific Instrument,2011,32 (12) .
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}