制作完整和焊接两种Q235B板材试样,利用声发射技术对其拉伸过程的损伤特性进行监测,根据获得的拉伸过程载荷时间历程曲线和材料损伤声发射信号,结合金属材料力学行为特性,对材料损伤声发射信号的幅度、振铃计数以及能量等参数进行分析,获得了材料塑性屈服、强化变形以及断裂等损伤阶段所表现出的声发射特性,通过对声发射信号撞击幅度和能量的统计分析,初步得到了不同损伤阶段所对应的声发射参数分布范围。对比分析完整和焊接两种试样损伤所表现出的不同声发射特性,结果表明声发射特性参数能够很好地描述焊接对材料力学特性的影响,并能以声发射参数“双峰”分布的形式从微观上反映焊接对试样屈服所造成的影响。实验结果为声发射技术应用于起重机结构状态监测提供了参考数据。
Abstract
Two Q235B tensile plate samples with and without weld joint are fabricated and their tensile damage properties are monitored by using acoustic emission technology (AET). Based on the loading history curves and the material damage acoustic emission signal during the tensile test, and combined with the metal material mechanical behavior, the acoustic emission characteristics during the plastic yielding, deformation strengthening and fracture of material damage stages are obtained by the analysis of AE amplitude, ringing counts and energy parameter. The AE parameters distribution range of different damage phase is also preliminarily gained by the impact statistical analysis on AE amplitude and energy parameter. It is discovered that the effects of welding on the material mechanical properties can be well described with AE characteristics by contrastive analysis of two tensile samples, and the yield process of welding area can be reflected in the "twin peaks" distribution of AE parameters from the microscopic aspect. Reference data for the crane structure condition monitoring with AET can be provided by this test.
Key words
Acoustic Emission /
Q235B /
Tensile Test /
Damage Pattern
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Drouillard TF. Acoustic emission:the first half century[R]. Progress in Acoustic Emission Ⅶ[C]. Sapporo, Japan: The Japanese Society for NDT,1994.
[2] Bogomolov L M, Il'ichev P V, Novikov V A, et al. Acoustic emission responseof rocks to electric power actionas seismic-electric effect manifestation[J]. Annals of Geophysics, 2004, 47(1).
[3] Kwon J-R, Lyu G-J, Lee T-H, et al. Acoustic emission testing of repaired storage tank[J]. International journal of pressure vessels and piping, 2001, 78(5): 373-378.
[4] Finlayson R D, Friesel M, Carlos M, et al. Health monitoring of aerospace structures with acoustic emission and acousto-ultrasonics[J]. INSIGHT-WIGSTON THEN NORTHAMPTON-, 2001, 43(3): 155-158.
[5] 张昌稳,叶辉,李强等。不同缺陷 Q345钢试样拉伸试验的声发射特征[J]。石油化工设备,2013,(4):5-9。
ZHANG Changwen, YE Hui, LI Qiang, et al. Acoustic Emission Characteristic of Different Q345 Steel Plates Containing Defects on Tensile Test[J]. Petro-Chemical Equipment,2013,(4):5-9.(in Chinese)
[6] Ennaceur C, Laksimi A, Herve C, et al. Monitoring crack growth in pressure vessel steels by the acoustic emission technique and the method of potential difference[J]. International journal of pressure vessels and piping, 2006, 83(3): 197-204.
[7] Roberts T, Talebzadeh M. Acoustic emission monitoring of fatigue crack propagation[J]. Journal of Constructional Steel Research, 2003, 59(6): 695-712.
[8] 钱骥,孙利民,蒋永.高强钢丝断裂声发射试验研究[J].振动与冲击,2014,33(4):54-59.
QIAN Ji,SUN Li-min, JIANG Yong.Acoustic emission tests for high-strength wire breakage[J].Journal of Vibration and Shock,2014,33(4):54-59.
[9] Soulioti D, Barkoula N, Paipetis A, et al. Acoustic emission behavior of steel fibre reinforced concrete under bending[J]. Construction and Building Materials, 2009, 23(12): 3532-3536.
[10] 郑修麟.工程材料的力学行为[M].西安:西北工业大学出版社,2004.
ZHENG Xiulin. Mechanical Behaviors of Engineering Materials[M]. Xi’an: Northwestern Polytechnical University Press, 2004.
[11] 李孟源,尚振东等.声发射检测及信号处理[M].北京:科学出版社,2010.
LI Mengyuan, SHANG Zhendong, et al. Acoustic Emission Detection and Signal Processing[M]. Beijing: Science Press, 2010.
[12] Carpenter S. H. Sources of Acoustic Emission Generated during Plastic Deformation of 7075 Aluminium Alloys. Metallurgical Transaction. 1977,8A(10):1629.
[13] 郑中兴.材料无损检测与安全评估[M].北京:中国标准出版社,2003.
ZHENG Zhongxing. Nondestructive Testing and Safety Assessment of Material[M]. Beijing: Chinese Standard Press, 2003.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}