[1]栗茂林,王孙安,梁霖. 利用非线性流形学习的轴承早期故障特征提取方法[J].西安交通大学学报,2010,44(5):45-49.
Li Maolin, Wang Sunan, Liang Lin. Feature Extraction for Incipient Fault Diagnosis of Rolling Bearings Based on Nonlinear Manifold Learnging[J]. Journal of Xian Jiao Tong University, 2010,44(5):45-49.
[2]张绍辉,李巍华.可变近邻参数的局部线性嵌入算法及其在轴承状态识别中的应用[J].机械工程学报,2013,49(1):81-87.
Zhang Shaohui, Li Weihua. Variable Nearest Neighbor Locally Linear Embedding and Applications in Bearing Condition Recognition[J]. Journal of Mechanical Engineering, 2013, 49(1): 81-87.
[3] 李锋,田大庆,王家序等.基于有监督增量式局部线性嵌入的故障辨识[J].振动与冲击,2013,32(23):82-88.
Li Feng, Tian Daqing, Wang Jiaxu, et al. Fault identification method based on supervised incremental locally linear embedding[J]. Journal of Vibration and Shock,,2013, 32(23):82-88.
[4]John A. Lee, Michel Verleysen. Quality assessment of dimensionality reduction: Rank-based criteria[J]. Neurocomputing, 2009, 72:1431-1443.
[5]Deyu Meng, Yee Leung, Zongben Xu. A new quality assessment criterion for nonlinear dimensionality reduction[J]. Neurocomputing, 2011, 74:941-948.
[6]Roweis,SaulL. Nonlinear dimensionality reduction by locally linear embedding[J]. Science,2000,290(5500):2323—2326.
[7]Kouropteva,Okun,PietikSinen. Selection of the optimal parameter value for the locally linear embedding algorithm[J]. In:Fisrt Internat. Conf. on Fuzzy Systems and Knowledge Discovery,2002.
[8]Genaro Daza-Santacoloma, German Castellanoes-Domiguez, Jose C. Principe. Locally Linear embedding based on correntropy measure for visualization and classification[J]. Neurocomputing, 2012, 80: 19-30.
[9]Genaro Daza-Santacoloma, German Castellanoes-Domiguez, Jose C. Principe. Functional Data Representation Using Correntropy Locally LINEAR Embedding[J]. IEEE International Workshop on Machine Learning for Signal Processing, Kittila, Finland, 2010: 7-12.
[10]阎庆,梁栋,张晶晶. 基于Fisher变换的植物叶片图像识别监督LLE算法[J]. 农业机械学报,2012,43(9):179-183.
Yan Qing, Liang Dong, Zhang Jingjing. Recognition Method of Plant Leaves Based on Fisher Projection-supervised LLE Algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012,43(9):179-183.
[11] L. Chen, Local multidimensional scaling for nonlinear dimension reduction graph layout and proximity analysis, Ph.D. Thesis, University of Pennsylvania, 2006.
[12] John A. Lee, Michel Verleysen, Quality assessment of dimensionality reduction: Rank-based criteria, Neurocomputing. 2009,72 : 1431-1443.
[13] Jianbo Shi, Jitendra Malik. Normalized Cuts and Image Segmentation[J]. IEEE Transactions on pattern analysis and machine intelligence, 2000, 22(8): 888-905.
[14] Maria C.V. Nascimento, Andre C.P.L.F. de Carvalho. Spectral methods for graph clustering — A survey[J]. European Journal of Operational Research, 2011, 211: 221-231.
[15]Seyed Salim Tabatabaei, Mark Coates, Michael Rabbat. GANC: Greedy agglomerative normalized cut for graph clustering [J]. Pattern Recognition, 2012, 45: 831-843.
[16]J. M. Nichols,F. Bucholtz,B. Nousain. Automated,rapid classification of signals using locally linear embedding[J]. Expert Systems with Applications, 2011, 38:13472-13474.