建立了考虑中介轴承非线性力的简化双转子模型,应用Matlab进行了数值计算,发现系统升、降速幅频曲线存在明显的滞后跳跃现象,并且在相同参数条件下,高、低压转子的滞后特性相似。进一步分别研究了转速比,中介轴承的径向间隙以及阻尼比对系统滞后特性的影响。研究发现转速比绝对值的增大使跳跃幅度逐渐增大但滞后区大小只有微弱的减小,并且使系统的临界转速逐渐减小,滞后区向左移动;径向间隙的增大使系统的滞后区逐渐增大但跳跃幅度几乎不变,而且对系统临界转速的影响较小;阻尼比的增大使系统的滞后区和跳跃幅度逐渐减小,并且使系统的临界转速减小,滞后区向左移动。该研究结果有助于进一步认识中介轴承对双转子系统振动特性的影响。
Abstract
A dynamic model of a dual-rotor system with nonlinear force of intermediary bearings was built, and Matlab was applicated for the numerical calculation and found that there is an obvious hysteresis characteristics which is similar to the high and low pressure rotor under the same parameters. And then, the influence of speed ratio of high and low pressure rotor, intermediary bearing’s radial clearance and damping ratio to system’s hysteresis characteristics were studied respectively. The studies found that the increasing of speed ratio grows a larger jump range while a narrower hysteresis region and a smaller critical speed which makes the hysteresis region move left. The larger the intermediary bearing’s radial clearance, the wider the hysteresis region, but the jump amplitude almost unchanged, and the increasing of radial clearance has produced little effect on critical speed. As for the damping ratio ,the larger it is, the smaller the system’s hysteresis region, jump range and critical speed will become, and the hysteresis region will move left. The study results will help researchers get a further understanding of the vibration of dual-rotor system which has the intermediary bearing.
关键词
反向旋转 /
双转子 /
中介轴承 /
滞后 /
跳跃现象 /
临界转速
{{custom_keyword}} /
Key words
counter-rotating /
dual-rotor /
intermediary bearing /
hysteresis /
jump /
critical speed
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈予恕,张华彪.航空发动机整机动力学研究进展与展望[J].航空学报,2011,32(8):1371-1391.
Chen Yu-shu, Zhang Hua-biao. Review and prospect on the research of dynamics of complete aero-engine systems[J]. Acta Aeronautica et Astronautica Sinica,2011,32(8):1371-1391. (in Chinese)
[2] Ferraris G, Lalanne M. Prediction of the dynamic behavior of non-symmetric coaxial co-or counter-rotating rotors [J]. Journal of Sound and Vibration,1996,195(4):649-666.
[3] Lalanne M, Ferraris G. Rotordynamics prediction in engineering [M]. England: Wiley,1989.
[4] Gupta K. Unbalance response of a dual rotor system: theory and experiment [J]. Journal of Vibration and Acoustics,1993,115:427-435.
[5] 罗贵火,胡绚,杨喜关.反向旋转双转子系统非线性分析[J].振动工程学报,2009,22(3):268-273.
LUO Gui-huo, HU Xuan, YANG Xi-guan. Nonlinear Analysis of counter-rotating dual-rotor system[J]. Journal of Vibration Engineering,2009,22(3):268-273.(in Chinese)
[6] 胡绚.反向旋转双转子系统动力学特性研究.[D].南京,南京航空航天大学,2007.6.
[7] 罗贵火.反向旋转双转子系统振动特性分析与实验研究
[D].南京,南京航空航天大学,1999.
[8] 晏砺堂,王德友. 航空双转子发动机动静件碰摩振动特征研究[J]. 航空动力学报,1998,13(2):173-176.
YAN Li-tang, WANG De-you. Vibration features from rubbing between rotor and casing for a dual-shaft aeroengine[J]. Journal of Aerospace Power,998,13(2):173-176.(in Chinese)
[9] HU Qinghua, DENG Sier, TENG Hongfei. A 5-DOF Model for Aeroengine Spindle Dual-rotor System Analysis[J]. Chinese Journal of Aeronautics, 2011,24,224-234.
[10] 于海,陈予恕,曹庆杰. 多自由度裂纹转子系统非线性动力学特性分析[J]. 振动与冲击,2014,33(7):93-98.
YU Hai, CHEN Yu-shu, CAO Qing-jie. Nonlinear dynamic behavior analysis for a cracked multi-DOF rotor system[J]. Journal of Vibration and Shock, 2014,33(7):93-98.(in Chinese)
[11] 邓四二,付金辉,王燕霜,等. 航空发动机滚动轴承-双转子系统动态特性分析[J]. 航空动力学报,2013,28(1):195-204.
DENG Si-er, FU Jin-hui, WANG Yan-shuang, et al. Analysis on dynamic characteristics of aero-engine rolling bearing/dual-rotor system[J]. Journal of Aerospace Power, 2013,28(1):195-204. (in Chinese)
[12] Liew A, Feng N, Hahn E J. Transient rotordynamic modeling of rolling element bearing systems[J] .Eng. Gas Turb. Power,124,984–991 (2002).
[13] 闻邦椿,顾家柳,夏松波,王正. 高等转子动力学[M]. 机械工业出版社,2000.
[14] 钟一鄂,何衍宗,王正,等.转子动力学[M].北京:清华大学出版社,1984.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}