基于正交匹配追踪的强脉冲电磁干扰滤波新方法

朱会杰 1, 王新晴 1,芮挺1, 赵洋 1, 李艳峰 1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (15) : 33-37.

PDF(1796 KB)
PDF(1796 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (15) : 33-37.
论文

基于正交匹配追踪的强脉冲电磁干扰滤波新方法

  • 朱会杰 1, 王新晴 1,芮挺1, 赵洋 1, 李艳峰 1
作者信息 +

A New Denoising Method for Strong Pulse Electromagnetic Interference Signals Based on Orthogonal Matching Pursuit

  • ZHU Hui-jie 1   WANG Xin-qing 1  RUI Ting1  ZHAO Yang 1   LI Yan-feng 1
Author information +
文章历史 +

摘要

针对强脉冲电磁干扰能量大、规律性不强,对信号污染严重,提出了一种滤波新方法。依据信号和脉冲电磁干扰结构的不同,构造了单位脉冲原子匹配脉冲电磁干扰,选择正弦原子、余弦原子和小波原子匹配有用信号。不同于常规稀疏分解滤波的思路,本文首先将脉冲电磁干扰看作信号成分,使用上述原子利用正交匹配追踪进行分解。然后,仅选择正弦原子、余弦原子和小波原子匹配的成分作为无噪信号,并将单位脉冲原子匹配的成分作为干扰滤除。仿真实验和实例应用证明,该方法能够有效抑制强脉冲电磁干扰和白噪声,不仅信噪比高,而且保留了细节。

Abstract

Because strong pulse electromagnetic interference (PEMI) has high energy and no regularity, and it pollutes signals seriously, we proposed a new denoising method to solve this problem. According to the different structure between signal and PEMI, the unit pulse atom was constructed to match PEMI, and the sine atom, cosine atom and wavelet atom were chosen to match signal. Unlike common filtering ways of sparse decomposition, the PEMI was firstly taken as signal component, and all the atoms above were used to decompose the original signal. Second, only the component matched by sine atom, cosine atom and wavelet atom was used to reconstruct the unpolluted signal, and the component matched by unit pulse atom was eliminated as PEMI. Simulations and applications testified that this technology could filter strong PEMI, the filtered signal not only has high signal to noise ratio, but also retain details.
 

关键词

正交匹配追踪 / 滤波 / 脉冲电磁干扰 / 多原子

Key words

orthogonal matching pursuit / denoise / pulse electromagnetic interference / multi atoms

引用本文

导出引用
朱会杰 1, 王新晴 1,芮挺1, 赵洋 1, 李艳峰 1. 基于正交匹配追踪的强脉冲电磁干扰滤波新方法[J]. 振动与冲击, 2015, 34(15): 33-37
ZHU Hui-jie 1 WANG Xin-qing 1 RUI Ting1 ZHAO Yang 1 LI Yan-feng 1. A New Denoising Method for Strong Pulse Electromagnetic Interference Signals Based on Orthogonal Matching Pursuit[J]. Journal of Vibration and Shock, 2015, 34(15): 33-37

参考文献

[1]. Liang J, Wang Y, Huang Y, etc. Electromagnetic interference shielding of graphene/epoxy composites[J]. Carbon, 2009, 47 (3): 922-925.
[2]. Al-Saleh M H, Sundararaj U. Electromagnetic interference shielding mechanisms of CNT/polymer composites[J]. Carbon, 2009, 47 (7): 1738-1746.
[3]. Tarateeraseth V, See K Y, Canavero F G, etc. Systematic electromagnetic interference filter design based on information from in-circuit impedance measurements[J]. Electromagnetic Compatibility, IEEE Transactions on, 2010, 52(3): 588-598.
[4]. Aggarwal R, Rathore S,Singh J K, etc. Noise Reduction of Speech Signal using Wavelet Transform with Modified Universal Threshold[J]. International Journal of Computer Applications, 2011, 20(5):14-19.
[5]. Inoue T, Saruwatari H, Takahashi Y, etc. Theoretical Analysis of Musical Noise in Generalized Spectral Subtraction Based on Higher Order Statistics[J]. Audio, Speech, and Language Processing, IEEE Transactions on, 2011, 19 (6): 1770-1779.
[6]. Wu Z, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in adaptive data analysis, 2009, 1 (01): 1-41.
[7]. Feng Z, Chu F. Application of atomic decomposition to gear damage detection[J]. Journal of sound and vibration, 2007, 302 (1): 138-151.
[8]. Olshausen B A. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996, 381 (6583): 607-609.
[9]. Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. Signal Processing, IEEE Transactions on, 1993, 41(12): 3397-3415.
[10]. Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. Information Theory, IEEE Transactions on, 2007, 53(12): 4655-4666.
[11]. Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM journal on scientific computing, 1998, 20(1): 33-61.
[12]. Donoho D L, Tsaig Y, Drori I, etc. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. Information Theory, IEEE Transactions on, 2012, 58(2): 1094-1121.
[13]. Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J]. Foundations of Computational Mathematics, 2007, 9(3): 317-334
[14]. Wright J, Yang A Y, Ganesh A, etc. Robust face recognition via sparse representation[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2009, 31(2): 210-227.
[15]. Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank[J]. Signal Processing Letters, IEEE, 2004, 11(2): 112-114.
[16]. Huang N E, Wu M-L C, Long S R, etc. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2003, 459(2037): 2317-2345.
[17]. 沈长青,谢伟达,朱忠奎, etc. 基于 EEMD 和改进的形态滤波方法的轴承故障诊断研究[J]. 振动与冲击, 2013, 32 (2): 39-43.
SHEN Chang-qing, ZHU Zhong-kui, LIU Fang, et al.Rolling element bearing fault diagnosis based on EEMD and improved morphological filtering method[J].Journal ofVibration and Shock,2014,33(4):11-16.
[18]. 钟先友,赵春华,陈保家, etc. 基于形态自相关和时频切片分析的轴承故障诊断方法[J]. 振动与冲击, 2014, 33 (4): 11-16.
ZHONG Xian-you, ZHAO Chun-hua, CHEN Bao-jia, et al.Bearing fault diagnosis method based on morphological filtering,time-delayed autocorrelation and time-frequency slice analysis[J].Journal ofVibration and Shock,2014,33(4):11-16
 

PDF(1796 KB)

Accesses

Citation

Detail

段落导航
相关文章

/