针对奇异值分解在信号降噪时有效秩的选择问题,提出一种基于矩阵秩最小化和统计修正的信号降噪方法。首先,利用矩阵秩最小化理论将奇异值有效秩选择问题转化为秩的约束优化问题;然后,通过凸优化求解,得到干净信号的Hankel矩阵,实现一次降噪;最后,根据奇异值子集标准差对干净信号Hankel矩阵进行统计修正,进一步优化降噪效果。模拟信号和真实信号的实验结果表明:该方法可以有效的消除脉冲干扰和高斯噪声,能够最大限度的降低信号均方误差,提高信噪比,增强了奇异值分解在信号降噪中的通用性。
Abstract
According to the selection problem of effective rank in the singular value decomposition for signal denoising, a signal denoising method based on matrix rank minimization and statistical modification is proposed. Firstly, effective rank selection problem of singular value decomposition is transformed into a constrained optimization problem of rank by using matrix rank minimization theory. Secondly, the Hankel matrix of the clean signal is obtained by convex optimization for the realization of the first noise reduction. Lastly, the clean signal Hankel matrix is carried through statistical correction based on every subset standard deviation of the singular value for further optimize the noise reduction effect. The simulation signal and real signal experimental results show: the method can effectively eliminate the pulse noise and Gaussian noise. In the same time, the method can reduce the maximum signal mean square error and improve the signal-to-noise ratio. So the method can enhance the universality of the singular value decomposition in signal denoising.
关键词
奇异值分解 /
奇异值扰动理论 /
矩阵秩最小化 /
奇异值子集标准差
{{custom_keyword}} /
Key words
Singular Value Decomposition /
Matrix Perturbation Theory /
Matrix Rank Minimization /
Subset Standard Deviation of the Singular Value
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Donoho D L, Gavish M. The Optimal Hard Threshold for Singular Values is [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2): 775-782.
[2]赵学智,叶彦邦,陈统坚.奇异值差分谱理论及其在车床主轴箱故障诊断中的应用[J]. 机械工程学报, 2010, 46(1):100-108.
Zhao X Z, Ye Y B, Chen T J. Difference Spectrum Theory of Singular Value and Its Application to the Fault Diagnosis of Headstock of Lathe [J]. Journal of Mechanical Engineering, 2010, 46(1):100-108.
[3]王建国,李健,刘颖源.一种确定奇异值分解降噪有效秩阶次的改进方法[J]. 振动与冲击, 2014, 33(12):176-180.
Wang J G, Li J, Liu Y Y. An improved method for determining effective order rank of SVD denoising [J]. Journal of Vibration and Shock, 2014, 33(12):176-180.
[4]钱征文,程礼,李应红.利用奇异值分解的信号降噪方法[J].振动,测试与诊断,2011, 31(4): 459-463.
Qian Z W, Cheng L, Li Y H. Signal denoising method by means of SVD[J]. Journal of Vibration Measurement & Diagnosis, 2011, 31(4):459-463.
[5]王树青,林裕裕,孟元栋等. 一种基于奇异值分解技术的模型定阶方法[J]. 振动与冲击, 2012, 31(15):87-91.
Wang S Q, Lin Y Y, Meng Y D, et al. Model order determination based on singular valued decomposition[J]. Journal of Vibration and Shock, 2012, 31(15):87-91.
[6]Golyandina N. On the choice of parameters in singular spectrum analysis and related subspace-based methods [DB/OL]. http://arxiv.org/abs/1005.4374, 2010-07-20.
[7]Mahmoudvand R, Zokaei M. On the singular values of the Hankel matrix with application in singular spectrum analysis[J]. Chilean Journal of Statistics, 2012, 3(1): 43-56.
[8]Hassani H, Xu Z Y, Zhigljavsky A. Singular spectrum analysis based on the perturbation theory[J]. Nonlinear Analysis : Real World Applications, 2011, 12: 2752-2766.
[9]Wright J, Ganesh A, Rao S, et al. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization[C]. The Twenty-Fourth Annual Conference on Neural Information Processing Systems, Vancouver, 2009: 2080-2088.
[10]Candès E J, Tao T. The power of convex relaxation: Near-optimal matrix completion[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2053-2080.
[11]Candes E J, Plan Y. Matrix completion with noise[J]. Proceedings of the IEEE, 2010, 98(6): 925-936.
[12]彭义刚,索津莉,戴琼海,等.从压缩传感到低秩矩阵恢复: 理论与应用[J].自动化学报, 2013, 39(7): 981-994.
Peng Y G, Suo J L, Dai Q H, et al. From compressed sensing to low-rank matrix recovery: theory and applications[J]. Acta Automatica Sinica, 2013, 39(7): 981-994.
[13]Zhou Z, Li X, Wright J, et al. Stable principal component pursuit[C]. Proceedings of the IEEE International Symposium on Information Theory. Austin, IEEE, 2010: 1518-1522.
[14]Lin Z, Chen M, Ma Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[DB/OL]. http:// arXiv preprint arXiv:1009.5055, 2010-09-26.
[15]Ashtiani M B, Shahrtash S M. Partial Discharge De-noising Employing Adaptive Singular Value Decomposition[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2): 775-782.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}