振动环境下光纤陀螺性能的变化称为振动误差,抑制或消除振动误差是光纤陀螺实用化的必然要求。分析了全数字闭环光纤陀螺反馈延迟对闭环跟踪性能的影响,揭示了振动误差的机理是振动环境引入的扰动不能得到较好的抑制,从而引入附加相移误差。为了抑制附加相移误差,在保证闭环稳定的条件下,提出了部分解调提前反馈方法。理论和仿真分析了不同提前反馈比例下陀螺闭环的附加相移误差,在振动测试台上实测了不同提前反馈比例时引入的附加相移及陀螺输出,结果表明增加提前反馈比例时附加相移误差减小,陀螺振动误差同步相应减小。部分解调提前反馈方法适用于不同的调制方式,可在不修改结构、光路等硬件设计的条件下提高光纤陀螺振动环境适应性。
Abstract
The performance of fiber optic gyroscope (FOG) changes under vibration, which leads to vibration errors, thus it is necessary for the usage of FOG to suppress the error. It was analyzed the impacts of the closed-loop tracking ability caused by the feedback delay which exists in the totally digitalized closed-loop of FOG, and the formation mechanism of vibration error was revealed that the disturbance brought in by vibration environment cannot be able to suppressed efficiently, which finally generate additional phase errors. For suppressing the error, a method named partially demodulation advanced feedback was proposed with taking the stability of the closed-loop in consideration. The additional phase error was analyzed with different advanced feedback coefficient theoretically and virtually, and the additional phase with different advanced feedback coefficient and the outputs of FOG were experimented on vibration testing platform, and it showed that the vibration errors decreased simultaneously as well as the additional phase error when increasing the advanced feedback coefficient. The Method of partially demodulation and advanced feedback was demonstrated to be appropriate for different demodulation and it can improve the adaptability of FOG for vibration environment without modification of hardware design, such as structures design and light path design etc.
关键词
光纤陀螺 /
振动 /
附加相移误差 /
反馈通道延迟 /
稳定性
{{custom_keyword}} /
Key words
fiber optic gyroscope /
vibration /
additional phase error /
feedback channel delay /
stability;
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] H.C.Lefèvre. The fiber-optic gyroscope: Achievement and perspective[J]. Gyroscopy and Navigation, 2012, 3(4): 223-226.
[2] 陈文海, 牟旭东, 舒晓武, 岑松原. 光纤陀螺的振动特性研究[J]. 光学仪器, 2003, 25(5): 19-23.
CHEN Wen-hai, MOU Xu-dong, SHU Xiao-wu, CEN Song-yuan. Study on characteristic of vibration of Fiber Optical Gyroscope. OPTICAL INSTRUMENTS[J]. 2003. 25(5): 19-23.
[3] 舒建涛.高精度光纤陀螺光纤环振动特性研究[D].哈尔滨:哈尔滨工程大学,2011.
Shu Jian-tao. Study on the Performance of Fiber Optic Gyroscope Coil under Vibration Condition[D]. Harbin: Harbin Engineering University.
[4] 宋凝芳, 张春熹, 李立京, 等. 数字闭环光纤陀螺振动误差分析[J]. 北京航空航天大学学报, 2004, 30(8): 702-704.
Song Ning-fang, Zhang Chun-xi, Li Li-jing, et al. Analysis of vibration error in digital closed-loop optic gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(8): 702-704(in Chinese).
[5] 孟照魁, 邵洪峰, 徐宏杰, 等. 固胶原对保偏光纤环的影响[J]. 北京航空航天大学学报, 2006,32(8): 958-961.
Meng Zhao-kui, Shao Hong-feng, Xu Hong-jie, et al. Effect caused by coating adhesive on polarization-maintaining fiber coil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(8): 958-961(in Chinese).
[6] 吴衍记,黄显林.机械振动对光纤陀螺的影响及减小措施[J].红外与激光工程,2008,37(2):363-364.
WU Yan-ji, HUANG Xian-lin. Influence of mechanical vibration on FOG and reducing measure[J]. Infrared and Laser Engineering, 2008, 37(2): 363-364.
[7] 刘淑荣,吴衍记,徐磊.结构谐振对闭环光纤陀螺振动性能的影响[J]. 红外与激光工程, 2008, 37, 256-259.
Liu Shu-rong, Wu Yan-ji, Xu Lei. Relationship between vibration error and structural resonancein closed-loop FOG[J]. Infrared and Laser Engineering,2008,37,256-259.
[8] 舒建涛,李绪友,吴磊,等.高精度光纤陀螺振动误差抑制技术[J].红外与激光工程,2011,40(11):2201-2206.
Shu Jian-tao, Li Xu-you, Wu lei, et al. Vibration error restrain technology for high-precision fiber optic gyroscope [J].Infrared and Laser Engineering, 2011, 40(11): 2201-2206(in Chinese).
[9] 李绪友,张娜,张瑞鹏.光纤陀螺在摇摆状态下的误差特性分析[J].仪器仪表学报,2011,32(4):843-849.
Li Xuyou, Zhang Na, Zhang Ruipeng. Error characteristic analysis of FOG on sway base[J]. Chinese Journal of Scientific Instrument, 2011, 32(4): 843- 849.
[10] 程鹏.自动控制原理[M].北京:高等教育出版社,2003:210-212.
Cheng Peng. The principle of automatic control[M]. Beijing:
Higher Education Press, 2003: 210-21.
[11] 张桂才.光纤陀螺原理与技术[M].北京:国防工业出版社,2008:229-231.
Zhang Guicai. The Principles and Technologies of Fiber-Optic Gyroscope[M]. Beijing: National Defence Industry Press, 2008: 229-331.
[12] 贾宏杰,陈建华,余晓丹.时滞环节对电力系统小扰动稳定性的影响[J].电力系统自动化,2006,30(5):5-8.
Jia Hong-jie, Chen Jian-hua, Yu Xiao-dan. Impacts of Time-delay on disturbance stability of electric power systems[J]. Automation of Electric Power Systems, 2006,
30(5): 5-8.
[13] 韩军良,葛升民,沈毅.数字闭环光纤陀螺建模与仿真研究[J].系统仿真学报,2008,20(4):833-836.
Han Jun-liang, Ge Sheng-min, Shen Yi. Research on Modeling and Simulation of Digital Closed-loop FOG [J]. Journal of System Simulation, 2008, 20(4):833-836.
[14] Radha Madhuri. Rajulapati, Jagannath Nayak, Naseema.Sk.
Modeling and Simulation of signal processing for a closed loop fiber optic gyro’s using FPGA[J]. International Journal of Engineering Science and Technology, 2012, 4(3): 947-959.
[15] Celikel O, San S.E. Establishment of All Digital Closed-Loop Interferometric Fiber-optic Gyroscope and Scale Factor Comparison for Open-Loop and All Digital Closed-Loop Configurations [J]. Sensors Journal, IEEE, 2009, 9(2): 176-186.
[16] 吴敏,桂卫华,何勇.现代鲁棒控制[M].2版.长沙:中南大学出版社,2010:18-19.
Wu Min, Gui Wei-hua, He yong. Advanced Robost Control[M] .2ndend. Changsha: Central South University Press,2010:18-19
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}