滚动轴承故障振动信号中的冲击成分呈现显著的非高斯性,高阶累积量和高阶谱技术是处理非高斯信号的良好分析工具。在四阶累积量Teager峭度的基础上提出滑动Teager峭度的分析方法,并联合三阶谱1.5维谱,提出基于1.5维Teager峭度谱的滚动轴承故障诊断方法。该方法首先对轴承故障信号进行滑动Teager峭度计算,获得一个反应故障信号冲击特性的Teager峭度时间序列,然后通过计算Teager峭度时间序列的1.5维谱,提取出滚动轴承故障特征频率。通过仿真信号分析验证了该方法的解调性能和提取滚动轴承弱冲击故障特征的能力。最后分析了滚动轴承内圈故障实验测试信号,并和基于快速Kurtogram算法的共振解调方法进行对比分析,验证了该方法的有效性。
Abstract
The vibration signals of faulty rolling element bearings perform remarkable non-Gaussian characteristics, high order cumulants and high order spectra technology are good tools in analyzing non-Gaussian signals. A method named sliding Teager kurtosis was proposed on the basis of Teager kurtosis, and it was connected with 1.5-dimension spectrum to propose a new fault diagnosis method for rolling element bearings based on 1.5-dimensional Teager kurtosis spectrum. First, a time series of Teager kurtosis that could reflect the impulse characteristics of the vibration signal was obtained through computation of sliding Teager kurtosis, then fault characteristic frequency of rolling element bearing would be extracted by calculating 1.5-dimension spectrum of the Teager kurtosis time series. The analysis of simulated signals reflected the demodulation function and the ability of extracting weak impulse in rolling element bearing fault diagnosis. Finally, the effectiveness of the proposed method was validated by analyzing an experimental inner ring fault signal, compared with the method of resonance demodulation based on fast computation of kurtogram.
关键词
1.5维谱 /
滑动Teager峭度 /
滚动轴承 /
故障诊断
{{custom_keyword}} /
Key words
1.5-dimension spectrum /
sliding Teager kurtosis /
rolling element bearing /
fault diagnosis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈进.机械设备振动监测与故障诊断[M]. 上海:上海交通大学出版社,1999.
[2] 王天金,冯志鹏,郝如江,等.基于Teager能量算子的滚动轴承故障诊断研究[J]. 振动与冲击, 2012, 31(2):1-5.
Wang Tianjin, Feng Zhipeng, Hao Rujiang, etal. Fault diagnosis of rolling element bearings based on Teager energy operator[J]. Journal of Vibration and Shock, 2012, 31(2):1-5.
[3] Martens H JV. Evaluation of uncertainty in interferometric vibration measurements [J],Optics and Lasers in Engineering ,2002, 38: 82 -101.
[4] 杨江天,陈家冀,曾子平.基于高阶谱的旋转机械故障特征征兆提取[J]. 振动工程学报, 2001, 14(1):13-15.
Yang Jiangtian, Chen Jiaji, Zeng Ziping. Extracting Fault Features Using Higher Order Spectra for Rotating Machinery [J].Journal of Vibration Engineering,2001,14(1): 13-15.
[5] 陈略,訾艳阳,何正嘉,等.噪声协助的EMD-1.5维谱信号抗混分解与特征提取[J].振动与冲击,2010,29(5):26-30.
Chen Lue,Zi Yanyang,He Zhengjia, etal. Noise-assisted EMD-1.5 dimension spectrum for signal anti-alias decomposition and feature extraction[J].Journal of Vibration and Shock,2010,29(5):26—30.
[6] 杨富春,周晓军,张志刚.基于滑动峰态算法的信号弱冲击特征提取及应用[J]. 振动与冲击, 2009, 28(4):103-105.
Yang Fuchun, Zhou Xiaojun, Zhang Zhigang. A new method for extracting weak impulse characteristic based on a sliding kurtosis algorithm[J].Journal of Vibration and Shock , 2009, 28(4): 103-105.
[7] 张德祥,吴小培,吕钊,等.基于经验模态分解和Teager 峭度的语音端点检测[J]. 仪器仪表学报, 2010, 31(3):493-498.
Zhang Dexiang, Wu Xiaopei, Lv Zhao, etal. Endpoint detection of speech signal based on empirical mode decomposition and Teager kurtosis[J]. Chinese Journal of scientific Instrument,2010,31(3): 493-498.
[8] 丘天爽,张旭秀,李小兵,等.统计信号处理:非高斯信号处理及应用[M]. 北京:电子工业出版社,2004.
[9] Marago s P, Kaiser J F, Quatieri T F. Energy separation in signal modulations with applications to speech analysis [J] .IEEE Transactions on Signal Processing, 1993, 41 (10) :3024- 3051.
[10] Ho D, Randall R B. Optimization of bearing diagnostic technique using simulated and actual bearing fault signals [J].Mechanical system and Signal Processing,2000,14 ( 5) :763- 788.
[11] 王宏超,陈进,董广明,等. 基于快速Kurtogram算法的共振解调方法在滚动轴承故障特征提取中的应用[J]. 振动与冲击, 2013, 32(1):35-38.
Wang Hongchao, Chen Jin, Dong Guangming,etal. Application of resonance demodulation in rolling bearing fault feature extraction based on fast computation of kutrogram[J]. Journal of Vibration and Shock, 2013, 32(1):35-38.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}