变分数阶振子振动控制方法研究

叶宇旻1, 周林根2,谢兴博3

振动与冲击 ›› 2015, Vol. 34 ›› Issue (16) : 119-121.

PDF(985 KB)
PDF(985 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (16) : 119-121.
论文

变分数阶振子振动控制方法研究

  • 叶宇旻1, 周林根2 ,谢兴博3
作者信息 +

Research on active vibration control method of variable order oscillator

  • YE Yu-min1, ZHOU Lin-gen2 ,XIE Xing-bo3
Author information +
文章历史 +

摘要

针对含变分数阶无量纲振子振动方程,考虑变分数阶微分算子表达式的复杂性,直接进行控制器设计不现实。通过分析位移时程曲线,采用截断变分数阶微分算子方式获得较好拟合效果。提出变遗忘因子概念,使变分数阶算子变为有限阶次,用其进行控制器设计成为可能,并仿真实例验证该方法的有效性。

Abstract

In the paper, a dimensionless version of the model oscillator is studied, the equation of motion is given as . Considering that the approximation expression of variable order(VO) differential operator is more complicated, it is difficult to design directly the controller, based on the curve analysis of displacement versus time, a truncation mode of VO differential operator is proposed, a concept of variable oblivion factor is proposed, meanwhile, an optimal controller is developed for the VO differential equation under study in order to reduce the dynamic responses.

关键词

变分数阶 / 振动控制 / 变遗忘因子 / 截断模态

Key words

vibration control / variable oblivion factor / truncation mode

引用本文

导出引用
叶宇旻1, 周林根2,谢兴博3. 变分数阶振子振动控制方法研究[J]. 振动与冲击, 2015, 34(16): 119-121
YE Yu-min1, ZHOU Lin-gen2,XIE Xing-bo3. Research on active vibration control method of variable order oscillator[J]. Journal of Vibration and Shock, 2015, 34(16): 119-121

参考文献

[1] 孙春艳,徐伟. 分数阶导数阻尼下非线性随机振动结构响应的功率谱密度估计[J]. 应用力学学报,2013,30(3):401-405.
   SUN Chun-yan,XU Wei. Response power spectral density estimate of a fractionally damped nonlinear oscillator[J]. Chinese Journal of Applied Mechanics, 2013,30(3):401-405.
[2] 石星星,周星德,竺启泽,等.建筑结构含分数阶振动控制的最优阶次研究[J]. 振动、测试与诊断,2013,33(2):269-272.
   SHI Xing-xing, ZHOU Xing-de, ZHU Qi-ze,et al.Optimal order of fractional-order vibration control of building structure[J]. Journal of Vibration,Measurement & Diagnosis,
   2013,33(2):269-272.
[3] Saptarshi D, Amitava G, Shantanu D. Generalized frequency domain robust tuning of a family of fractional order PI/PID controllers to handle higher order process dynamics[J]. Advanced Materials Research, 2012, 403: 4859-4866.
[4] Eva K, Seenith S. Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions[J].  Nonlinear Analysis: Real World Applications, 2012,13(3): 1489-1497.
[5] Coimbra C F M. Mechanics with variable-order differential operators[J]. Ann. Phys. ,2003,12(11/12): 692-703.
[6] Shyu J J, Pei S C, Chan C H. An iterative method for the design of variable fractional-order FIR differintegrators[J]. Signal Processing, 2009, 89(3): 320-327.
[7] Chan C H, Shyu J J, Yang R H. Iterative design of variable fractional-order IIR differintegrators[J]. Signal Processing, 2010, 90(2): 670-678.
[8] Soon C M, Coimbra C F M, Kobayashi M H. The variable viscoelasticity oscillator[J]. Ann. Phys., 2005,14(6):378-389.
[9] Balachandran K, Park J Y, Anandhi E R. Controllability of fractional integrodifferential systems in Banach spaces[J]. Nonlinear Analysis: Hybrid Systems, 2009, 3(4): 363-367.
[10] Diaz G, Coimbra C F M. Nonlinear dynamics and control of a variable order oscillator with application to the van der pol equation[J]. Nonlinear Dynamics, 2009,56(1/2):145-157.
[11]Piotr O, Tomasz R. Variable-fractional-order dead-beat control of an electromagnetic servo[J].  Journal of Vibration and Control, 2008,14(9/10): 1457-1471.

PDF(985 KB)

Accesses

Citation

Detail

段落导航
相关文章

/