基于灵敏度及层次分析法的键合头多目标结构优化

宫文峰1,2,黄美发2,张美玲1,莫秋云1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (16) : 128-134.

PDF(2180 KB)
PDF(2180 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (16) : 128-134.
论文

基于灵敏度及层次分析法的键合头多目标结构优化

  • 宫文峰1,2,黄美发2,张美玲1,莫秋云1
作者信息 +

Multi-objective optimization of bonding head based on sensitivity and analytic hierarchy process

  • GONG Wen-feng1, 2,HUANG Mei-fa2,ZHANG Mei-ling1,MO Qiu-yun1
Author information +
文章历史 +

摘要

为满足保证键合头动态特性、避免共振条件下达到结构轻量化设计要求,提出基于灵敏度计算参数优选及基于层次分析法最优解提取相结合的多目标优化设计方法。通过有限元仿真计算与模态实验结合研究键合头动态特性验证有限元模型精度。针对拾取臂部件设计参数进行灵敏度分析并提取优化设计变量。用多目标遗传优化算法对拾取臂以一阶固有频率、结构质量为目标优化计算,用层次分析法优选出最佳优化方案。结果表明,优化后拾取臂一阶固有频率提高27.1%,结构质量减轻8.9%,且键合头已避开共振频段达到设计要求。该研究方法具有较高的精度及应用价值。

Abstract

Flip chip bonding head (FCBR) is a core function component of microelectronic flip chip bonding equipment used to deal with the process of chip picking, dispensing, and bonding. In order to meet the dynamic characteristics of bonding head and avoid resonance phenomenon and to meet the structure lightweight design requirement, in this paper, the multi-objective optimization design method is proposed by combining design parameter filtration based on sensitivity analysis and optimal solution extraction based on Analytic Hierarchy Process (AHP). The dynamic characteristic is investigated by finite element simulating calculation and modal experiment test. The precision of finite element model is verified. The optimization design variables are extracted by parameter sensitivity calculation. The first order inherent frequency and structure mass of picking arm are as the optimization objective. The best optimization solution is selected by using AHP. The results show that the first order inherent frequency of picking arm is enhanced by 27.1% and the mass decreased by 8.9%. Therefore, the research methods have higher precision and application value.

关键词

倒装键合头 / 动态特性 / 模态实验 / 参数灵敏度 / 层次分析法 / 多目标优化

Key words

flip chip bonding head (FCBR) / dynamic characteristic / modal experiment / parameter sensitivity / analytic hierarchy process (AHP) / multi-objective optimization design

引用本文

导出引用
宫文峰1,2,黄美发2,张美玲1,莫秋云1. 基于灵敏度及层次分析法的键合头多目标结构优化[J]. 振动与冲击, 2015, 34(16): 128-134
GONG Wen-feng1, 2,HUANG Mei-fa2,ZHANG Mei-ling1,MO Qiu-yun1. Multi-objective optimization of bonding head based on sensitivity and analytic hierarchy process[J]. Journal of Vibration and Shock, 2015, 34(16): 128-134

参考文献

[1] Reza A. Semiconductor backend flip chip processing, inspection requirements and challenges [J]. Semi IEEE: Iemt, 2002 (4):18-22. 
[2] Gong W F, Huang M F, Chen L L, et al. Dynamic characteristics analysis of the flip chip bonding head based on multiple working conditions[J]. International Conference on Electronic Packaging Technology, IEEE, 2013: 732-737.
[3] 中华人民共和国科学技术部. 国家中长期科技和技术发展规划纲要(2006-2020)[C]. http:// most.gov.cn/. 2006-02-09.
[4] 姜衡,管贻生,邱志成,等. 基于响应面法的立式加工中心动静态多目标优化[J]. 机械工程学报, 2011, 47 (11): 125-133.
JIANG Heng, GUAN Yi-sheng, QIU Zhi-cheng, et al. Dynamic and static multi-objective optimization of a vertical machining center based on response surface method [J]. Journal of Mechanical Engineering, 2011, 47 (11): 125-133.
[5] 蔡力钢,马仕明,赵永胜,等. 重载摆角铣头模态分析与实验研究[J]. 振动与冲击,2011,30(7):250-255.
CAI Li-gang, MA Shi-ming, ZHAO Yong-sheng, et al. Modal analysis and experimental research on heavy load angularly deflecting milling head [J]. Journal of Vibration and Shock, 2011, 30 (7): 250-255.
[6] Massa F,Tison T,Lallemand B. Fuzzy modal analysis: prediction of experimental behaviors[J]. Journal of Sound and Vibration, 2009, 322:135-154.
[7] Kromulski J, Hojan E. An application of two experimental modal analysis methods for the determination of operational deflection shapes[J]. Journal of Sound and Vibration, 1996, 196(4): 429-438.
[8] 宫文峰,黄美发,邱彪,等. 倒装键合机复杂钣金件试验模态分析[J]. 机械设计与制造, 2014, 2: 203-205.
GONG Wen-feng, HUANG Mei-fa, QIU Biao, et al. Experimental modal analysis of complex sheet metal parts of flip chip bonder [J]. Machinery Design & Manufacture, 2014, 2: 203-205.
[9] Altintas Y, Brecher C, Weck C, et al. Virtual machine tool [J]. Annals-Manufacturing Technology, 2005, 54(2): 115-138.
[10] 张俊红,王健,毕凤荣,等. 基于EMD和时频分析的低振动机体结构优化研究[J]. 振动与冲击, 2014, 33(3): 117-121.
ZHANG Jun-hong, WANG Jian, BI Feng-rong, et al. Structural optimization of a low-vibration block based on EMD and time-frequency analysis [J]. Journal of Vibration and Shock, 2014, 33(3): 117-121.
[11] 戴航,袁爱民. 基于灵敏度分析的结构模型修正[M]. 北京:科学出版社,2011.
[12] Saaty T L. A scaling method for priorities in hierarchical structures [J]. Journal of Mathematical Psychology, 1997 (15): 234-281. 

PDF(2180 KB)

Accesses

Citation

Detail

段落导航
相关文章

/