强背景噪声下微弱声发射信号提取及处理研究现状

范博楠,王海斗,徐滨士,张玉波

振动与冲击 ›› 2015, Vol. 34 ›› Issue (16) : 147-155.

PDF(1451 KB)
PDF(1451 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (16) : 147-155.
论文

强背景噪声下微弱声发射信号提取及处理研究现状

  • 范博楠,王海斗,徐滨士,张玉波
作者信息 +

Research states of the extraction and processing for weak acoustic emission signals under strong background noise

  • FAN Bo-nan,WANG Hai-dou,XU Bin-shi,ZHANG Yu-bo
Author information +
文章历史 +

摘要

针对故障诊断领域声发射信号因工作环境及采集设备自身影响常受强背景噪声干扰导致混叠失真问题,对故障诊断中声发射信号特性及处理流程、强背景噪声下声发射信号降噪方法(小波分析,ICA,EMD)、声发射信号特征提取及故障识别等国内外对强背景噪声下微弱声发射信号提取、处理研究现状进行综述;分析总结声发射信号在降噪、特征提取及故障识别研究中存在的不足,探讨解决方法,展望声发射信号处理技术发展。

Abstract

In the field of fault diagnosis, acoustic emission signals are often exposed to strong background noise because of the environment and the detection system, which leads to aliased distortion of AE signals. A review of the research states of the extraction and processing for acoustic emission signals under strong background noise is presented, including the characteristics of AE signals in fault diagnosis, the processing flow of AE signals, the denoising of AE signals including wavelet, ICA and EMD, the feature extraction and fault recognition. Then a summary of insufficiency and methods in the research of denoising, feature extraction and fault recognition of AE signals is also presented. At the end, the future development of AE technology and signal processing methods is forecasted.

关键词

声发射 / 噪声 / 特征提取 / 故障识别 / 信号处理

Key words

acoustic emission / noise / feature extraction / fault recognition / signal processing

引用本文

导出引用
范博楠,王海斗,徐滨士,张玉波. 强背景噪声下微弱声发射信号提取及处理研究现状[J]. 振动与冲击, 2015, 34(16): 147-155
FAN Bo-nan,WANG Hai-dou,XU Bin-shi,ZHANG Yu-bo. Research states of the extraction and processing for weak acoustic emission signals under strong background noise[J]. Journal of Vibration and Shock, 2015, 34(16): 147-155

参考文献

[1] 陈敏,胡茑庆,秦国军,等. 参数调节随机共振在机械系统早期故障检测中的应用[J]. 机械工程学报,2009,45(4): 131- 135.
CHEN Min, HU Niao-qing, QIN Guo-jun,et al. Application of parameter-tuning stochastic resonance for detecting early mechanical faults[J]. Journal of Mechanical Engineering, 2009, 45(4): 131-135.
[2] 赵艳菊. 强噪声背景下机械设备微弱信号的提取与检测技术研究[D]. 天津:天津大学, 2008.
[3] Escaler X, Egusquiza E, Farhat M,et al. Detection of cavitation in hydraulic turbines[J]. Mechanical Systems and Signal Processing, 2006, 20(4): 983-1007.
[4] Chen Zhong-sheng, Yang Yong-min, Xie Yong,et al. Non-contact crack detection of high-speed blades based on principal component analysis and euclidian angles using optical-fiber sensors[J]. Sensors and Actuators A, 2013, 201: 66-72.
[5] Mba D. The use of acoustic emission for estimation of bearing defect size[J]. Journal of Failure Analysis and Prevention, 2008, 8(2): 188-192.
[6] 王仲生,何红,陈钱. 小波分析在发动机早期故障识别中的应用研究[J]. 西北工业大学学报, 2006, 24(1): 68-71.
WANG Zhong-sheng, HE Hong, CHEN Qian. Exploring effective early identification of aero-engine rotor faults[J]. Journal of North Western Poly Technical University, 2006, 24(1):68-71.
[7] Whalen A D. Detection of signals in noise. electrical science a series of monographs and texts[M]. London: Academic Press Inc, 1971.
[8] 张荣标,胡海燕,冯友兵. 基于小波熵的微弱信号检测方法研究[J]. 仪器仪表学报, 2007, 28(11): 2078-2084.
ZHANG Rong-biao, HU Hai-yan, FENG You-bing. Study on weak signal detection method based on wavelet entropy[J]. Chinese Journal of Scientific Instrument,2007,28(11): 2078- 2084.
[9] Zhou Rui, Bao Wen, Li Ning,et al. Mechanical equipment fault diagnosis based on redundant second generation wavelet packet transform[J]. Digital Signal Processing, 2010, 20(1): 276-288.
[10] He Ping, Li Pan, Sun Hui-qi. Feature extraction of acoustic signals based on complex Morlet wavelet[J]. Procedia Engineering, 2011, 15: 464-468.
[11] 步贤政,单平,罗震,等. 基于独立分量分析的点焊特征声音信号提取[J]. 焊接学报, 2009, 30(2): 41-44.
BU Xian-zheng, SHAN Ping, LOU Zhen,et al. Characteristic extraction of acoustic signals emitted from resistance spot welding process based on independent component analysis[J]. Transactions of the China Welding Institution, 2009, 30(2): 41-44.
[12] 顾江,张光新,刘国华,等. 基于独立分量分析的声发射信号去噪方法[J]. 江南大学学报:自然科学版,2008,7(1):55-59.
GU Jiang, ZHANG Guang-xin, LIU Guo-hua,et al. Research on denoising in acoustic emission signals based on independent component analysis[J]. Journal of Jiangnan University:Natural Science Edition, 2008, 7(1): 55-59.
[13] 汤宝平,蒋永华,董绍江. 重分配小波尺度谱的时频分布优化方法研究[J]. 仪器仪表学报, 2010, 31(6):1330-1334.
TANG Bao-ping, JIANG Yong-hua, DONG Shao-jiang. Time frequency representation optimization of reassigned wavelet scalogram[J]. Chinese Journal of Scientific Instrument, 2010, 31(6): 1330-1334.
[14] Kuo C C. Artificial recognition system for defective types of transformers by acoustic emission[J]. Expert Systems with Applications, 2009, 36(7): 10304-10311.
[15] Tan C K, Mba D. Identification of the acoustic emission source during a comparative study on diagnosis of a spur gearbox[J]. Tribology International, 2005, 38(5): 469-480.
[16] Mirhadizadeh S A, Moncholi E P, Mba D. Influence of operational variables in a hydrodynamic bearing on the generation of acoustic emission[J]. Tribology International, 2010, 43(9): 1760-1767.
[17] Tittmann B R, Yen C E. Acoustic emission technique for monitoring the pyrolysis of composites for process control[J]. Ultrasonics, 2008, 48(6/7): 621-630.
[18] Mba D, Rao R B K N.Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines: bearings, pumps, gearboxes, engines and rotating structures[J].The Shock and Vibration Digest,2006,38(1): 3-16.
[19] 张志强,李国禄,王海斗,等. 基于声发射原理监测涂层疲劳磨损的研究[J]. 摩擦学学报, 2012, 32(1): 89-95.
ZHANG Zhi-qiang, LI Guo-lu, WANG Hai-dou,et al. Monitoring fatigue wear of the coating based on acoustic emission[J]. Tribology, 2012, 32(1): 89-95.
[20] 郝如江,卢文秀,褚福磊. 声发射检测技术用于滚动轴承故障诊断的研究综述[J]. 振动与冲击, 2008, 27(3): 75-79.
HAO Ru-jiang, LU Wen-xiu, CHU Fu-lei. Review of diagnosis of rolling element bearings[J]. Journal of Vibration and Shock, 2008, 27(3): 75-79.
[21] 崔建国,李明,陈希成,等. 基于声发射技术飞机关键部件健康监测方法[J]. 仪器仪表学报, 2008, 29(10): 2126-2129.
CUI Jian-guo, LI Ming, CHEN Xi-cheng,et al. Health monitoring of airplane key components based on acoustic emission[J]. Chinese Journal of Scientific Instrument, 2008, 29(10): 2126-2129.
[22] 王晓伟. 基于声发射技术的旋转机械碰摩故障诊断研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
[23] 李舜酩,许庆余. 微弱振动信号的谐波小波频域提取[J]. 西安交通大学学报, 2004, 38(1): 51-55.
LI Shun-ming, XU Qing-yu. Harmonic wavelet extraction for weak vibration signal in frequency domain[J]. Journal of
Xían Jiaotong University, 2004, 38(1): 51-55.
[24] Terchi A, Au Y H J. Acoustic emission signal processing[J]. Measurement and Control, 2001, 8(4): 240-244.
[25] Yang Li, Zhou Yi-chun. Wavelet analysis of acoustic emission signals from thermal barrier coatings wavelet analysis of acoustic emission signals from thermal barrier coatings[J]. Nonferrous Metals Society of China Transactions, 2006, 16: 270-275.
[26] 李学军,廖传军,褚福磊. 适于声发射信号故障特征提取的小波函数[J]. 机械工程学报, 2008, 44(3): 177-181.
LI Xue-jun, LIAO Chuan-jun, CHU Fu-lei. Wavelet function suitable for fault feature extraction of acoustic emission signal[J]. Journal of Mechanical Engineering. 2008, 44(3): 177-181.
[27] 廖传军,李学军,刘德顺. 小波再分配尺度谱在声发射信号特征提取中的应用[J]. 机械工程学报,2009,45(2): 273-279.
LIAO Chuan-jun LI Xue-jun LIU Des-hun. Application of reassigned wavelet scalogram in feature extraction based on acoustic emission signal[J]. Journal of Mechanical Engineering, 2009, 45(2): 273-279.
[28] Grosse C U, Finck F, Kurz J H, et al. Improvements of AE technique using wavelet algorithms, coherence functions and automatic data analysis[J]. Construction and Building Materials, 2004, 18: 203-213.
[29] Khadem S E, Rezaee M. Development of vibration signature analysis using multiwavelet systems[J]. Journal of Sound and Vibration, 2003, 261: 613-633.
[30] Velayudham A, Krishnamurthy R, Soundarapandian T. Acoustic emission based drill condition monitoring during drilling of glass/phenolic polymeric composite using wavelet packet transform[J]. Materials Science and Engineering, 2005, 412: 141-145.
[31] 姜长泓,王龙山,尤文,等. 基于平移不变小波的声发射信号去噪研究[J]. 仪器仪表学报, 2006, 27(6): 607-610.
JIANG Chang-hong, WANG Long-shan, YOU Wen,et al. Research on acoustic emission signal de-noising based on translation invariant wavelet[J]. Chinese Journal of Scientific Instrument, 2006, 27(6): 607-610.
[32] 邓艾东,赵力,包永强,等. 噪声环境下基于小波熵的声发射识别[J].东南大学学报:自然科学版,2009,39(6): 1151-1155.
DENG Ai-dong, ZHAO Li, BAO Yong-qiang,et al. Recognition of acoustic emission based on wavelet entropy in noisy condition[J]. Journal of Southeast University: Natural Science Edition, 2009, 39(6): 1151-1155.
[33] Safty S E, El-Zonkoly A. Applying wavelet entropy principle in fault classification[J]. Electrical Power and Energy Systems, 2009, 31: 604-607.
[34] 印欣运,何永勇,彭志科,等. 小波熵及其在状态趋势分析中的应用[J]. 振动工程学报, 2004, 17(2): 165-169.
YIN Xin-yun, HE Yong-yong,PENG Zhi-ke,et al. Study on wavelet entropy and its applications intrend analysis[J]. Journal of Vibration Engineering, 2004, 17(2): 165-169.
[35] 于金涛,赵树延,王祁. 基于经验模态分解和小波变换声发射信号去噪[J]. 哈尔滨工业大学学报, 2011, 43(10): 88-92.
Yu Jin-tao, ZHAO Shu-yan, WANG Qi. De-nosing of acoustic emission signals based on empirical mode decomposition and wavelet transform[J]. Journal of Harbin Institute of Technology, 2011, 43(10): 88-92.
[36] 夏文静,傅行军. 基于 ICA在强背景噪声振动信号中的去噪研究[J]. 汽轮机技术, 2006, 48(2): 121-123.
Xia Wen-jing, Fu Xing-jun. De-noising in intensive noises vibration signal based on independent component analysis(ICA)[J]. Turbina Technology, 2006, 48(2): 121-123.
[37] de-la-Rosa J J G, Puntonet C G,Piotrkowski R, et al. Comparison of two ICA algorithms in BSS applied to non- destructive vibratory tests[J]. SEAL 2006, LNCS 4247, 2006, 4132:750-755.
[38] 李卿. 基于独立分量分析的切削声发射源信号分离研究[D]. 上海: 上海交通大学, 2011.
[39] 何沿江,齐明侠,罗红梅. 基于ICA和SVM的滚动轴承声发射故障诊断技术[J]. 振动与冲击, 2008, 27(3): 150-153.
HE Yan-jiang, QI Ming-xia, LOU Hong-mei. Simplified viv coupling model for submarine pipe span with spoiler[J]. Journal of Vibration and Shock, 2008, 27(3): 150-153.
[40] 王向红. 混流式水轮机叶片裂纹声发射监测的若干关键技术研究[D]. 上海: 上海交通大学, 2009.
[41] 王艳青. 复合材料风机叶片疲劳损伤监测研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
[42] 刘国华,黄平捷,龚翔,等. 基于分形维和独立分量分析的声发射特征提取[J]. 华南理工大学学报:自然科学版, 2008, 36(1): 76-80.
LIU Guo-hua, HUANG Ping-jie, GONG Xiang,et al. Feature extraction of acoustic emission signals based on fractal dimension and independent component analysis[J]. Journal of South China University of Technology:Natural Science Edition, 2008, 36(1): 76-80.
[43] 程军圣.基于Hilbert-Huang变换的旋转机械故障诊断方法研究[D]. 湖南: 湖南大学, 2005.
[44] 孙立瑛,李一博,靳世久,等.基于小波包和HHT变换的声发射信号分析方法[J].仪器仪表学报,2008,29(8):1577-1582.
SUN Li-ying, LI Yi-bo, JIN Shi-jiu, et al. Acoustic emission signal processing method based on wavelet package and HHT transform[J]. Chinese Journal of Scientific Instrument, 2008, 29(8): 1577-1582.
[45] 关山. 基于声发射信号的多特征分析与融合的刀具磨损分类与预测技术[D]. 吉林: 吉林大学, 2011.
[46] 徐锋,刘云飞,宋军. 基于中值滤波-SVD和EMD的声发射信号特征提取[J]. 仪器仪表学报, 2011, 32(12): 2712-2719.
XU Feng, LIU Yun-fei, SONG Jun. Feature extraction of acoustic emission signals based on median filter-singular value decomposition and empirical mode decomposition[J]. Chinese Journal of Scientific Instrument, 2011, 32(12): 2712- 2719.
[47] Law L S, Kim J H, Liew W Y H, et al. An approach based on wavelet packet decomposition and Hilbert-Huang transform (WPD–HHT) for spindle bearings condition monitoring[J]. Mechanical Systems and Signal Processing,2012,33:197- 211.
[48] 李俊平,周创兵. 岩体的声发射特征试验研究[J]. 岩土力学, 2004, 25(3): 374-378.
LI Jun-ping,ZHOU Chuang-bing. Experimental research on acoustic emission characteristics of rock mass[J]. Rock and Soil Mechanics, 2004, 25(3): 374-378.
[49] 冷永刚. 大信号变尺度随机共振的机理分析及其工程应用研究[D]. 天津: 天津大学, 2004.
[50] Cao Yi-jia, Wang Jing-dai, Liu Wei, et al. Wall sheeting diagnosis in fluidized beds based on chaos analysis of acoustic emission signals[J]. Journal of Zhejiang University Science A, 2009, 10(9): 1341-1349.
[51] 成新民,胡峰,邓艾东,等. 基于代数网络和混沌参数的碰摩声发射源定位方法研究[J].振动工程学报,2011,24(3):287- 293.
CHENG Xin-min, HU Feng, DENG Ai-dong,et al. Research on localization of acoustic emission source based on algebraic neural network and chaotic features[J]. Journal of Vibration Engineering, 2011, 24(3): 287-293.
[52] 田昊,唐力伟,田广,等. 基于核独立分量分析的齿轮箱故障诊断[J]. 振动与冲击, 2009, 28(5): 163-164.
TIAN Hao, TANG Li-wei, TIAN Guang,et al. Fault diagnosis of gearbox based on KICA[J]. Journal of Vibration and Shock, 2009, 28(5): 163-164.
[53] 刘爱伦,袁小艳,俞金寿. 基于KPCA-SVC的复杂过程故障诊断[J]. 仪器仪表学报, 2007, 28(5): 870-874.
LIU Ai-lun, YUAN Xiao-yan, YU Jin-shou. Fault diagnosis of complex chemical process based on KPCA-SVC[J]. Chinese Journal of Scientific Instrument,2007,28(5):870- 874.
[54] Wang G, Sun Ya, Ding Q,et al. Estimation of source spectra profiles and simultaneous determination of polycomponent in mixtures from ultraviolet spectra data using kernel independent component analysis and support vector regression[J]. Analytica Chimica Acta,2007, 594(1): 101-106.
[55] Wang X H, Mao H L, Zhu C M,et al. Damage localization in hydraulic turbine blades using kernel independent component analysis and support vector machines[J]. Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, 2009, 223(2):525-529.
[56] 金文,陈长征,金志浩,等. 声发射源识别中的三比值特征提取方法研究[J]. 仪器仪表学报, 2008, 29(3): 530-534.
JIN Wen, CHEN Chang-zheng, JIN Zhi-hao,et al. Study on three-parameter-ratio method in AE source recognition[J]. Chinese Journal of Scientific Instrument, 2008, 29(3): 530- 534.
[57] Jin Wen, Chen Chang-zheng, Jin Zhi-hao,et al. An improved recognition approach of acoustic emission sources based on matter element[J]. ICIC 2007, LNCS, 2007,4681: 1070-1077.
[58] 刘国华,黄平捷,杨金泉,等.基于高阶谱的混凝土材料断裂声发射特征提取[J].吉林大学学报:工学版,2009,39(3): 803- 808.
LIU Guo-hua, HUANG Ping-jie, YANG Jin-quan,et al. Feature extraction of concrete material's AE measuring based on high order spectrum[J]. Journal of Jilin University: Engineering and Technology Edition, 2009, 39(3): 803-808.
[59] 林丽,赵德有. 基于局域波近似熵的声发射信号处理[J]. 大连理工大学学报, 2010, 50(1): 75-80.
LIN Li, ZHAO De-you. Acoustic emission signal processing based on local wave and approximate entropy[J]. Journal of Dalian University of Technology, 2010, 50(1): 75-80.
[60] 邓扬,丁幼亮,李爱群. 基于小波包分析的拉索损伤声发射信号特征提取[J]. 振动与冲击, 2010, 29(6): 154-158.
DENG Yang, DING You-liang, LI Ai-qun. Feature extraction of acoustic emission signals for cable damage based on wavelet packet analysis[J]. Journal of Vibration and Shock, 2010, 29(6): 154-158.
[61] Yang Zhen-sheng, Yu Zhong-hua. Grinding wheel wear monitoring based on wavelet analysis and support vector machine[J].Int J Adv Manuf Technol, 2012, 62: 107-121.
[62] Lin Li, Chu Fu-lei. Feature extraction of AE characteristics in offshore structure model using Hilbert-Huang transform[J]. Measurement, 2011, 41(1): 46-54.
[63] Yang Zhen-sheng, Yu Zhong-hua, Xie Chao,et al. Application of Hilbert-Huang transform to acoustic emission signal for burn feature extraction in surface grinding process[J]. Measurement, 2014, 47: 14-21.
[64] Yu Jin-tao, Ding Ming-li, Meng Fan-gang,et al. Acoustic emission source identification based on harmonic wavelet packet and support vector machine[J]. Journal of Southeast University(English Edition), 2011, 27(3): 300-304.
[65] Luo Zhi-gao, Wang Xiang, Li Ju. Study of punch die condition discrimination based on wavelet packet and genetic neural network[J]. ISNN 2008, Part II, LNCS, 2008,5264: 483-491.
[66] Liu Chang-ming, Wang Zhi-gang, Li You-rong. Damage pattern recognition of refractory materials based on bp neural network[J]. ICONIP 2012, Part IV, LNCS, 2012,7666: 431- 440.
[67] 王向红,朱昌明,毛汉领,等. 基于小波神经网络的水轮机叶片裂纹源的定位技术[J]. 上海交通大学学报, 2008, 42(8): 1301-1304.
WANG Xiang-hong, ZHU Chang-ming, MAO Han-ling,et al. Source location of cracks of turbine blades based on wavelet neural network[J]. Journal of Shanghai Jiaotong University, 2008, 42(8): 1301-1304.
[68] Stepanova L N, Ramazanov I S, Kanifandin K V. Detecting hazardous sources of acoustic emission signals using the estimated energy of clusters[J]. Russian Journal of Nondestructive Testing, 2010, 46(9): 676-683.
[69] Deng Ai-dong, Zhao Li, Wei Xin. The application of wavelet neural network optimized by particle swarm in localization of acoustic emission source[J]. ICONIP 2009, Part II, LNCS, 2009, 5864: 738-745.
[70] 于金涛,丁明理,王祁. 基于多输出支持向量回归的声发射源平面定位[J]. 仪器仪表学报, 2011, 32(9): 2139-2145.
YU Jin-tao, DING Ming-li, WANG Qi. Planar location of acoustic emission source based on multi-output support vector regression[J]. Chinese Journal of Scientific Instrument, 2011, 32(9): 2139-2145.
[71] 苏永振,袁慎芳. 基于独立分量分析的多源冲击定位方法[J]. 振动与冲击, 2008, 28(8): 134-137.
SU Yong-zhen, YUAN Shen-fang. Method for locating multiple impact sources based on independent component analysis[J]. Journal of Vibration and Shock, 2008, 28(8): 134-137.

PDF(1451 KB)

Accesses

Citation

Detail

段落导航
相关文章

/