基于立体机器视觉的动目标空间位姿测试研究

歹英杰,汪 伟,邓士杰,苏续军

振动与冲击 ›› 2015, Vol. 34 ›› Issue (16) : 188-194.

PDF(2307 KB)
PDF(2307 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (16) : 188-194.
论文

基于立体机器视觉的动目标空间位姿测试研究

  • 歹英杰,汪  伟,邓士杰,苏续军
作者信息 +

Research on position and posture measurement of dynamic target based on stereo machine vision

  • DAI Ying-jie,WANG Wei,DENG Shi-jie,SU Xu-jun
Author information +
文章历史 +

摘要

针对动态目标振动位姿测试问题,研究平行光轴立体视觉测试及标定模型,建立非接触动态目标空间位姿测试系统。通过双CCD拍摄目标靶振动图像,据目标点像素位置信息获得目标点空间坐标,再由像素始末位置变化求解点偏移量,进而求出动目标空间位姿。通过静、动态试验验证,测量精度约为0.1 mm,相对误差小于5%,满足工程测试要求。结果表明,测试系统结构紧凑,测量精度高,适用性强,能实现位姿测试智能化及数据分析处理自动化,可用于测量三维空间中目标的运动参数及空间姿态等。

Abstract

Position and posture for dynamic target measurement problem is widely studied. Researching the testing and calibration model of the parallel optical axis stereo vision, and establishing non-contact measurement system of dynamic target’s position and posture. Measurement system uses double CCDs to capture vibration images of the target. System extracts the target pixel position information to calculate the spatial coordinates of the target point, then according to the target pixel position changes the whole process, to calculate the displacement variation in three dimensions, finally, count out the target’s position and posture. Verified by the static and dynamic experiments, results show that the measurement accuracy is about 0.1mm, the relative error is less than 5%, meeting the engineering test requirements. Measurement system has the features of compact, high accuracy and applicability, and achieving the purposes of intellectualized test and data analysis process automation. It can be widely used to measure objectives’ three-dimensional space motion parameters and space gesture in engineering tests area, etc.
 

关键词

机器视觉 / 平行光轴 / 动态目标 / 位姿测试

Key words

machine vision / parallel optical axis / dynamic target / position and posture measurement

引用本文

导出引用
歹英杰,汪 伟,邓士杰,苏续军. 基于立体机器视觉的动目标空间位姿测试研究[J]. 振动与冲击, 2015, 34(16): 188-194
DAI Ying-jie,WANG Wei,DENG Shi-jie,SU Xu-jun. Research on position and posture measurement of dynamic target based on stereo machine vision[J]. Journal of Vibration and Shock, 2015, 34(16): 188-194

参考文献

[1] 朱长春,王懋礼,曾启铭,等.振动环境试验响应的神经网络预测方法[J].振动与冲击,2007,26(4):42-45.
ZHU Chang-chun, WANG Mao-li, ZENG Qi-ming, et al. Neural network prediction for responses of random bivration envirionment tests[J]. Journal of Vibration and Shock, 2007, 26(4):42-45.
[2] 李勇,闫维明,陈彦江.基于倾角测试的桥梁变形实时监测研究[J].振动与冲击,2013,35(5):65-69.
LI Yong, YAN Wei-ming, CHEN Yan-jiang. Bridge deflection real-time monitoring based on inclined angle measurement[J]. Journal of Vibration and Shock, 2013,35(5):65-69.
[3] 韩冬,何闻.超低频标准振动系统基础设计技术[J].振动与冲击,2008,27(9):20-22.
HAN Dong, HE Wen. Design of foundation for standard vibration systems with ultra-low-frequency[J]. Journal of Vibration and Shock, 2008,27(9):20-22.
[4] 滑广军,李强,杨益民,等.某大型超静定框架的动态应力测试
与有限元分析[J].振动与冲击,2008,27(8):170-172.
HUA Guang-jun, LI Qiang, YANG Yi-min,et al. Dynamic
test and finite element analysis of some large-scale statically indeterminate structure[J]. Journal of Vibration and Shock, 2008,27(8):170-172.
[5] Chung H, Liang J, kushiyama S, et al. Digital image process- ing for non-linear system identification[J]. International Journal of Non-linear Mechanics, 2004,39(5):691-707.
[6] 常磊,李国宁,金龙旭.基于FPGA的全帧型面阵CCD驱动时序设计[J].光学技术,2006,32:313-316.
CHANG Lei, LI Guo-ning, JIN Long-xu. Design on driving generator based on FPGA technology for CCD full frame area image sensor[J]. Optical Technique, 2006,32:313-316.
[7] Hartley R, Zisserman A. Multiple view geometry in computer vision (2nd Ed) [M]. UK:Cambridge University Press, 2003.
[8] 张晓玲.远距离运动物体动态参数测试技术的理论和实验研究[D].天津:天津大学,2005.
[9] Lenz R K, Tasi R Y. Techniques for calibration of the scale factor and image center for high accuracy 3D machine vision metrology[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(5):713-720.
[10] Shah S, Aggarwal J K. Intrinsic parameter calibration procedure for a(high 2 distortion) fish 2 eye lens camera with distortion model and accuracy estimation[J]. Pattern Recognition, 1996,29(11):1775-1788.
[11] 全燕鸣,黎淑梅,麦青群.基于双目视觉的工件尺寸在机三维测量[J].光学精密工程,2013,21(4):1054-1061.
QUAN Yan-ming, LI Shu-mei, MAI Qing-qun. On-machine 3D measurement of workpiece dimensions based on binocular vision [J]. Optics and Precision Engineering, 2013,21(4): 1054-1061.
[12] 韦海萍,赵保军,唐林波,等.Canny算法的改进及其硬件的实现[J].光学技术,2006,32(2):263-266.
WEI Hai-ping, ZHAO Bao-jun, TANG Lin-bo, et al. Impr- ovement of Canny algorithm and implementation in hardware [J]. Optical Technique, 2006,32(2):263-266.
[13] 刘国栋,刘炳国,陈凤东,等.亚像素定位算法精度评价方法的研究[J].光学学报,2009,29(12):3446-3451.
LIU Guo-dong, LIU Bing-guo, CHEN Feng-dong,et al. Study on the method of the accuracy evaluation of sub-pixel location operators[J]. Acta Optica Sinica, 2009,29(12):3446-3451.
[14] Zhang Z Y. Flexible camera calibration by viewing a plane from unknown orientations, International Conference on Com- puter Vision(ICCV’99)[C]. Kerkyra: IEEE Xplore Digital Library,1999.
[15] 曲学军,张璐.基于双目视觉的三维测量方法[J].计算机仿真,2011,28(2):373-377.
QU Xue-jun, ZHANG Lu. 3D measurement method based on binocular vision technique[J]. Computer Simulation, 2011,28(2):373-377.

PDF(2307 KB)

Accesses

Citation

Detail

段落导航
相关文章

/