多联连续梁桥快速MPA方法

曹飒飒1,2,钟剑,1袁万城1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (16) : 195-199.

PDF(1705 KB)
PDF(1705 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (16) : 195-199.
论文

多联连续梁桥快速MPA方法

  • 曹飒飒1,2,钟剑,1袁万城1
作者信息 +

Rapid MPA method for multiple multi-span continuous bridges

  •  CAO Sa-sa1,2,ZHONG Jian1,YUAN Wan-cheng1
Author information +
文章历史 +

摘要

提出针对多联连续梁桥的快速MPA方法。通过等位移准则计算控制点目标位移,结合MPA方法进行多联连续梁桥快速多模态推倒分析,能极大简化多模态推倒分析步骤。以某3联连续梁桥为例,将等位移准则计算的控制点位移近似作为多模态推倒分析目标位移,用快速MPA方法对其抗震性能进行评估。与非线性动力时程分析结果对比表明,快速MPA方法可有效评估多联连续梁桥抗震性能。

Abstract

Rapid MPA method is proposed for multiple multi-span continuous bridges. In rapid MPA, target displacements of control points are computed by equal displacement rule. Rapid MPA method greatly simplify the procedure of MPA. For a multiple multi-span continuous bridge, it is shown that control points’ displacements computed by equal displacement rule can be used as target displacements. Rapid MPA of the bridge is conducted for seismic performance evaluation. Compared with time-history analysis, it turns out that rapid MPA is capable of providing reasonable seismic responses of multiple multi-span continuous bridges.

关键词

等位移准则 / 多联连续梁桥 / 多模态推倒分析 / 目标位移

Key words

equal displacement rule / multiple multi-span continuous bridges / rapid modal pushover analysis / target displacement

引用本文

导出引用
曹飒飒1,2,钟剑,1袁万城1. 多联连续梁桥快速MPA方法[J]. 振动与冲击, 2015, 34(16): 195-199
CAO Sa-sa1,2,ZHONG Jian1,YUAN Wan-cheng1. Rapid MPA method for multiple multi-span continuous bridges[J]. Journal of Vibration and Shock, 2015, 34(16): 195-199

参考文献

[1]Chopra A K,Goel R K. A modal pushover analysis procedure for estimating seismic demands for buildings[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(3): 561-582.
[2] Kappos A J,Paraskeva T S,extos A G. Seismic assessment of a major bridge using modal pushover analysis and dynamic time-history analysis[J]. Keynote lecture, ICCES, 2004, 4: 673-680.
[3] Paraskeva T S,Kappos A J,extos A G. Extension of modal pushover analysis to seismic assessment of bridges[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(10): 1269-1293.
[4] Paraskeva T S,Kappos A J. Further development of a multimodal pushover analysis procedure for seismic assessment of bridges[J]. Earthquake Engineering & Structural Dynamics, 2010, 39(2): 211-222.
[5]魏标,李建中. 非规则梁桥的模态推倒分析[J]. 振动与冲击, 2011, 30(2): 110-114.
WEI Biao, LI.Jian-zhong.Modal pushover analysis of an irregular continuous bridge[J]. Journal of Vibration and Shock,2011, 30 (2): 110-114.
[6]魏标,李建中. 基于位移的非规则梁桥抗震设计[J]. 土木工程学报, 2011, 44(8): 95-101.
   WEI Biao, LI Jian-zhong. Displacement- based seismic design of irregular continuous bridges[J]. China Civil Engineering Journal. 2011, 44 (8): 95-101.
[7]陈星烨,唐雪松,赵冰. 修改的 MPA 法用于连续刚构桥的抗震性能分析[J]. 振动与冲击, 2010, 29(12): 93-96.
   CHEN Xing-hua,TANG Xue-song, ZHAO Bing. Modified MPA for seismic performance evaluation of continuous rigid frame bridges[J]. Journal of Vibration and Shock,2010, 29(12): 93-96.
[8]Caltrans S D C. Caltrans seismic design criteria version 1.3[S]. California Department of Transportation, Sacramento, California, 2004,
[9]郭磊. 桥梁结构基于位移的抗震设计方法研究[D]. 上海: 同济大学, 2006.
[10]魏标,李建中. 连续梁桥横桥向等位移准则[J]. 振动与冲击, 2009, 28(11): 100-104.
    WEI Biao, LI Jian-zhong. Equal displacement rule in transverse direction of multi-span continuous bridge[J]. Journal of Vibration and Shock,2009, 28 (11):100-104.
[11] Priestley M J N. Seismic design and retrofit of bridges[M].John Wiley & Sons, 1996.
[12] CJJ 166-2011,城市桥梁抗震设计规范[S].
[13]Pinho R, Monteiro R, Casarotti C, et al. Assessment of continuous span bridges through nonlinear static procedures [J]. Earthquake Spectra, 2009, 25(1): 143-159.
[14] Shakeri K, Tarbali K,Mohebbi M. Modified adaptive modal combination procedure for nonlinear static analysis of bridges[J]. Journal of Earthquake Engineering, 2013, 17(6): 918-935.
 

PDF(1705 KB)

659

Accesses

0

Citation

Detail

段落导航
相关文章

/