氧化铝空心球复掺玄武岩纤维轻骨料混凝土动力学性能

叶学华1,许金余1,2,刘俊良2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (16) : 207-212.

PDF(1807 KB)
PDF(1807 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (16) : 207-212.
论文

氧化铝空心球复掺玄武岩纤维轻骨料混凝土动力学性能

  • 叶学华1,许金余1,2,刘俊良2
作者信息 +

Dynamic performance of alumina bubble- basalt fiber lightweight aggregate concrete

  • YE Xue-hua1,XU Jin-yu1,2,LIU Jun-liang2
Author information +
文章历史 +

摘要

采用直径100 mm分离式霍普金森压杆试验系统,研究不同应变率下素混凝土(PC)、玄武岩纤维混凝土(BC)、氧化铝空心球混凝土(AC)及玄武岩纤维-氧化铝空心球复合混凝土(BAC)动力学性能,构建动态本构模型。结果表明,应变率提高,4组试件动压强度、峰值应变、均值应变及破碎分形维数增大,应变率效应显著;掺入氧化铝空心球使试件强度及动弹性模量降低,峰值应变及均值应变增大,冲击变形性能增强。基于Sargin非线性弹性静态本构模型,引入率强化因子与骨料弱化因子构建材料的动态本构模型,所得拟合曲线与实测应力应变曲线吻合较好,特征强度与特征应变等基本相同。

Abstract

采用直径100 mm分离式霍普金森压杆试验系统,研究不同应变率下素混凝土(PC)、玄武岩纤维混凝土(BC)、氧化铝空心球混凝土(AC)及玄武岩纤维-氧化铝空心球复合混凝土(BAC)动力学性能,构建动态本构模型。结果表明,应变率提高,4组试件动压强度、峰值应变、均值应变及破碎分形维数增大,应变率效应显著;掺入氧化铝空心球使试件强度及动弹性模量降低,峰值应变及均值应变增大,冲击变形性能增强。基于Sargin非线性弹性静态本构模型,引入率强化因子与骨料弱化因子构建材料的动态本构模型,所得拟合曲线与实测应力应变曲线吻合较好,特征强度与特征应变等基本相同。

关键词

轻骨料混凝土 / 氧化铝空心球 / SHPB / 动力学性能 / 本构模型

Key words

轻骨料混凝土 / 氧化铝空心球 / SHPB / 动力学性能 / 本构模型

引用本文

导出引用
叶学华1,许金余1,2,刘俊良2. 氧化铝空心球复掺玄武岩纤维轻骨料混凝土动力学性能[J]. 振动与冲击, 2015, 34(16): 207-212
YE Xue-hua1,XU Jin-yu1,2,LIU Jun-liang2. Dynamic performance of alumina bubble- basalt fiber lightweight aggregate concrete[J]. Journal of Vibration and Shock, 2015, 34(16): 207-212

参考文献

[1] 胡维新,孙伟,秦鸿根. 高效能轻集料混凝土的研制与应用[J]. 混凝土, 2012 (7): 1-2.
HU Wei-xin, SUN Wei, QIN Hong-gen. Development and application of high efficient light concrete[J]. Concrete, 2012(7): 1-2.
[2]  Rossignolo J A. Mechanical properties of polymer modified lightweight aggregate concrete[J]. Cement and Concrete Research,2002,32:329-338.
[3]  Skvortsov V, Kepler J, Bozhevolnaya E. Energy partition for ballistic penetration of sandwich panels[J]. Int. J. Impact Eng. , 2003, 28: 697-716.
[4]  Bischoff P H, Yamura K,Perry S H. Polystyrene aggregate concrete subjected to hard impact[J].Proc. Inst. Civil Eng.(Part2), 1990, 89(2): 225-239.
[5]  王丹,郭志昆,邵飞,等. 塑钢混杂纤维轻骨料混凝土的动力学性能[J]. 硅酸盐学报, 2014, 10: 1253-1259.
    WANG Dan, GUO Zhi-kun, SHAO Fei, et al. Dynamic mechanical properties of plastic steel hybrid fibers reinforced lightweight aggregate concrete[J]. Journal of the Chinese Ceramic Society, 2014, 10: 1253-1259.
[6]  许金余,赵德辉,范飞林. 纤维混凝土的动力特性[M]. 西安: 西北工业大学出版社, 2013.
[7]  李为民,许金余. 玄武岩纤维对混凝土的增强和增韧效应[J]. 硅酸盐学报, 2008,36(4): 476-479.
LI Wei-min, XU Jin-yu. String thening and toughening in basalt fiber-reinforced concrete[J]. Journal of the Chinese Ceramic Society, 2008,36(4): 476-479.
[8]  Zielinski, Krzysztof, Olszewski, et al. The impact of basaltic fibre on selected physical and mechanical properties of cement mortar[C]. Concrete Precasting Plant and Technology, 2005: 28-33.
[9]  胡显奇,董国义,鄢宏. 玄武岩纤维在建筑和基础设施中的应用[J]. 工业建筑, 2004(S): 21-26.
HU Xian-qi, DONG Guo-yi, YAN Hong. The application of basalt fiber in construction and infrastructure[J]. Industrial Construction, 2004(S): 21-26.
[10] 许金余,李为民,王亚平,等. 玄武岩纤维对不同胶凝材料混凝土的强韧化效应[J]. 解放军理工大学学报:自然科学版, 2011, 12(3): 245-250.
XU Jin-yu, LI Wei-min, WANG Ya-ping, et al. Effect of short basalt fiber on enhancement of strength and ductility for concretes with different binder materials[J]. Journal of PLA University of Science and Technology:Natural Science Edition, 2011, 12(3): 245-250.
[11] Frew D J,Forrestal M J, Chen W. Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar[J]. Experimental Mechanics,2005,45(2): 186- 195.
[12] 李为民,许金余. 大直径分离式霍普金森压杆试验中的波形整形技术研究[J]. 兵工学报, 2009, 30(3): 350-355.
LI Wei-min, XU Jin-yu. Pulse shaping techniques for large-diameter split Hopkinson pressure bar test[J]. Acta Armamentarii , 2009, 30(3): 350-355.
[13] 王礼立. 应力波基础[M]. 北京: 国防工业出版社, 2005.
[14] 王立闻,庞宝君,林敏,等. 活性粉末混凝土高温后冲击力学性能研究[J]. 振动与冲击, 2012, 31(16): 27-31.
WANG Li-wen, PANG Bao-jun, LIN Min, et al. Impact mechanical properties of reactive powder concrete after exposure in high temperature[J]. Journal of Vibration and Shock, 2012, 31(16): 27-31.
[15] 曹茂森,任青文,翟爱良,等. 混凝土结构损伤的分形特征实验分析[J]. 岩土力学, 2005, 26(10): 1570-1574.
CAO Mao-sen, REN Qing-wen, ZAI Ai-liang, et al. Experimental study on fractal characterization in damages of concrete structures[J]. Rock and Soil Mechanics, 2005, 26(10): 1570-1574.
[16] 任韦波,许金余,刘远飞,等. 高温后玄武岩纤维混凝土冲击破碎分形特征[J]. 振动与冲击, 2014,33 (10): 167-171.
REN Wei-bo, XU Jin-yu, LIU Yuan-fei, et al. Fractal characteristics of fragments of basalt fiber reinforced concrete after elevated temperatures under impact loading[J]. Journal of Vibration and Shock, 2014 ,33(10): 167-171.
[17] Tai Y S. Uniaxial compression tests at various loading rates for reactive powder concrete[J]. Theoretical and Applied Fracture Mechanics, 2009, 52(1): 14-21.
[18] Sargin M. Stress-strain relationship for concrete analysis of structural concrete section. study (No.4)[M].Canada:Solid Mechanics Division. University of Waterloo, Ontario, 1971.

PDF(1807 KB)

530

Accesses

0

Citation

Detail

段落导航
相关文章

/