基于区域分解的快速多极基本解法预测发动机表面辐射声场

陈长征1,张士伟1, 周 勃2, 黄鹤艇3

振动与冲击 ›› 2015, Vol. 34 ›› Issue (16) : 31-37.

PDF(1609 KB)
PDF(1609 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (16) : 31-37.
论文

基于区域分解的快速多极基本解法预测发动机表面辐射声场

  • 陈长征 1,张士伟1, 周  勃2, 黄鹤艇3
作者信息 +

Prediction of acoustic radiation field of engine surface by domain decomposition-based fast multipole method of fundamental solution

  • CHEN Chang-zheng1,ZHANG Shi-wei 1,ZHOU Bo2,HUANG He-ting3
Author information +
文章历史 +

摘要

针对发动机表面结构复杂,多狭长边界,用通常算法求解源点分布无法保障基本解法计算精度问题,提出改进的计算源点分布算法,利用区域分解处理影响基本解计算精度的狭长边界;结合快速多极算法,形成适于三维复杂表面辐射声场预测基于区域分解的快速多极基本解法。利用区域分解求解发动机计算模型的源点分布,在源点分布已知基础上利用快速多极基本解法预测发动机表面辐射声场。结果表明,利用区域分解求得源点与配置点最优距离为34.5 mm,可提高发动机辐射声场预报精度;截断项数为15时可避免截断项数过小引起的低频不稳定,并保证计算效率;不同于快速多极边界元用网格加密提高计算精度,基于区域分解的快速多极基本解法通过区域分解进行优化源点分布可提高精度,且不增加计算负担。通过发动机表面辐射噪声实验,计算值与实验值吻合较好,说明该解法可提高发动机表面辐射声场的预测精度。

Abstract

Due to the complex structure of engine surface and a lot of long narrow borders, standard approaches to solving the distribution of source points cannot gain enough computational precision of the method of fundamental solution(MFS). Thus, an improved algorithm for solving the distribution of source points is presented and it is used to deal with long narrow borders. Combined with fast multipole algorithm, domain decomposition-based fast mutipole method of fundamental solution (FMMFS) is formed. The improved algorithm is used to solve the distribution of source points and then the FMMFS is used to predict the acoustic radiation field of engine surface. The results show that the optimal distance between the collocation points and source points is 34.5mm and the computational precision is improved. When truncation terms are 15, it not only avoids uncertainty in low frequency by the too small truncation terms, but also guarantees the computational efficiency. To improve the computational precision, domain decomposition-based fast mutipole method of fundamental solution uses domain decomposition to solve the distribution of source points; it differs from the Fast multipole BEM which adapts mesh refinement. The experimental results are in good agreement with computational results, which indicate that domain decomposition-based fast mutipole method of fundamental solution improves the computational precision of the prediction of acoustic radiation field of engine surface. 
 
 

关键词

快速多极基本解法 / 声辐射 / 发动机 / 截断误差 / 声场测量

Key words

 fast multipole method of fundamental solutions / acoustic radiation / engine / truncation term / sound field measurement

引用本文

导出引用
陈长征1,张士伟1, 周 勃2, 黄鹤艇3. 基于区域分解的快速多极基本解法预测发动机表面辐射声场[J]. 振动与冲击, 2015, 34(16): 31-37
CHEN Chang-zheng1,ZHANG Shi-wei 1,ZHOU Bo2,HUANG He-ting3 . Prediction of acoustic radiation field of engine surface by domain decomposition-based fast multipole method of fundamental solution[J]. Journal of Vibration and Shock, 2015, 34(16): 31-37

参考文献

[1] 冯仁华,张大鸣,邓帮林,等. 一种高效的发动机辐射噪声计算方法研究[J]. 振动与冲击,2014,33(18):198-203.
FENG Ren-hua, ZHANG Da-ming, DENG Bang-lin, et al. A fast and high accuracy calculation method for engine radiated noise[J].Journal of Vibration and Shock, 2014,33(18):198-203. [2] 赵志高,黄其柏. 复杂结构的声辐射解耦及其声辐射效率分析[J]. 振动工程学报,2004,17(3):326-331.
ZHAO Zhi-gao, HUANG Qi-bai. Analysis of acoustical radiation decoupling and acoustical radiation efficiency of complex structure[J]. Journal of Vibration Engineering, 2004, 17(3): 326-331.
[3] Burton A J, Miller G F. The application of integral equation methods to the numerical solution of some exterior boundary value problems[J]. Proceedings of the Royal Society of London Series A, 1971, 323:201-210.
[4] Kupradze V D, Aleksidze M A. The method of functional equations for the approximate solution of certain boundary value problems[J]. Computational Mathematics and Mathematical Physics , 1964, 4(4):82-126.
[5] Greengard L, Rokhlin V. A fast algorithm for particle simulations[J]. Journal of Computational Physics, 1987, 73(2): 325-348.
[6] SHEN L, Liu Y J. An adaptive fast multiple boundary element method for three-dimensional acoustic wave problems based on the burton-miller formulation[J].Computational Mechanics, 2007, 40(3): 461-472.
[7] 吴海军,蒋伟康,鲁文波. 三维声学多层快速多极子边界元及其应用[J]. 物理学报,2012,61(5):1-8.
WU Hai-jun, JIANG Wei-kang, LU Wen-bo. Multilevel fast multipole boundary element method   for 3D acoustic problems and its applications[J]. Acta Phys. Sin.,2012, 61(5): 1-8.
[8] 崔晓兵,季振林. 快速多极子边界元法在吸声材料声场计算中的应用[J]. 振动与冲击,2011,30(8):187-193.
CUI Xiao-bing, JI Zhen-lin. Application of FMBEM to calculation of sound fields in sound-absorbing material [J]. Journal of Vibration and Shock, 2011, 30(8):187-193.
[9] 李善德.大规模声学问题的快速多极边界元方法研究[D].武汉:华中科技大学,2011.
[10] Liu Y J, Nishimura N, Yao Z H. A fast multiple accelerated method of fundamental solutions for potential problems [J].Engineering Analysis with Boundary elements, 2005, 29(11):1016-1024.
[11] Jiang X, Chen W, Chen C S. A fast method of fundamental solutions for solving Helmholtz-type equations[J]. International Journal of Computational Methods,2013, 10(2): 89-108.
[12] 陈剑,高煜,许滨,等. 计算结构随机振动辐射声场的统计波叠加方法[J]. 振动工程学报,2009,22(3):246-251.
CHEN Jian, GAO Yu, XU Bin, et al. Sound radiation in stochastic acoustic field using statistical wave superposition method[J]. Journal of Vibration Engineering, 2009,22(3):246- 251.
[13] 张炳荣,陈剑,陈立涛,等. 二维场预测的快速多极基本解法[J]. 声学学报, 2014,39(3):347-352.
ZHANG Bing-rong, CHEN Jian, CHEN Li-tao, et al. A fast multipole method of fundamental solutions for two dimensional acoustic radiation problems[J]. Chinese Journal of Acoustics, 2014, 39(3):347-352.
[14] 吴绍维,向阳,夏雪宝.基于无单元声波叠加的自辐射近似解析表达研究[J].振动与冲击,2014,33(7):79-85. 
WU Shao-wei,XIANG Yang,XIA Xue-bao.Approximate analytical expressions of self-radiation terms inclading acoustic pressure and velocity based on element free acoustic wave superposition[J].Journal of Vibration and Shock,2014,33(7): 79-85.
[15] Fairweather G, Karageoghis A, Martin P A. The method of fundamental solutions for scattering and radiation problems [J].Engineering Analysis with Boundary Elements, 2003, 27(7):759-769.
[16] Karageorghis A. A prac tical algorithm for determining the optimal pseudo-boundary in the method of fundamental solutions[J]. Advances in Applied Mathematics and Mechanics, 2009,4(1):510-528.
[17] Seybert A F, Soenarko B. Radiation and scattering of acoustic waves from bodies of arbitrary shape in a three-dimensional half space[J]. Transactions of the ASME, Journal of Vibration, Acoustics, Stress, and Reliability in Design,1988,110:113-117.
[18] Gorzelańczyk P, Kołodziej J A. Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods[J]. Engineering Analysis with Boundary Elements, 2008, 32(1): 64-75.
[19] Tankelevich R, Fairweather G, Karageorghis A, et al. Potential field based geometric modeling using the method of fundamental solutions[J]. International Journal for Numerical Methods in Engineering, 2006, 68(12):1257-1280.
[20] Tetsuya S,Yosuke Y. Fast multipole boundary element method for large-scale steady-state sound field analysis, part I: setup and validation[J]. Acta Acustica United with Acustica, 2002, 88(4):513-525.

PDF(1609 KB)

789

Accesses

0

Citation

Detail

段落导航
相关文章

/