对柱式柔性桥墩刚度较小下部构件结构形式的中小跨径桥梁,利用铅芯橡胶支座双线性恢复力特性,通过调节桥梁下部结构整体刚度,改变地震力在不同墩柱间的分配可提升桥梁整体抗震能力。定义桥梁损伤的5种状态,归纳出以曲率延性判定5种损伤水平的量化指标,并与桥墩墩顶位移相关联。选典型桥梁建立有限元模型进行动力弹塑性分析,将隔震改造前后桥梁墩顶位移概率需求与地震易损性进行对比。分析表明,采用柔性桥墩的梁桥结构进行合理隔震改造后,只要保证隔震支座体系正常运行,桥梁整体在大震作用下的抗震水平可明显提升。
Abstract
Lower member of smaller stiffness , such as flexible column pier, has become the most widespread structure in small or medium-span bridge. For this type of bridge, using the LRB bilinear restoring force characteristics by adjusting the overall stiffness of the bridge substructure to change the seismic force distribution between different piers can improve the overall seismic capacity. Five states of bridge injury are defined, quantitative indicators based on curvature ductility to determine the level of these five kinds of damage are summarized, and with the bridge pier top displacement associated. Typical bridge is selected to establish finite element model for dynamic elastic-plastic analysis, pier top displacement probability demand and seismic vulnerability of the bridge before and after isolation were compared, the analysis shows that, for the adoption of the flexible column pier structure, after reasonable isolation transformation, as long as the system to ensure the normal operation of isolation bearings, bridge seismic level of overall improvement in the earthquake effect is evident.
关键词
隔震桥梁 /
柱式柔性墩 /
易损性分析 /
损伤水平 /
铅芯橡胶支座
{{custom_keyword}} /
Key words
Isolated bridge /
flexible column pier /
fragility analysis /
damage index /
LRB
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李圣,钟铁毅,张常勇. 基于概率地震需求分析的铅芯橡胶支座抗震性能研究[J]. 振动与冲击, 2013,32(7): 48-53.
LI Sheng,ZHONG Tie-yi,ZHANG Chang-yong. Aseismic performance of LRB based on probabilistic seismic demand analysis[J]. Journal of Vibration and Shock, 2013,32(7):48-53.
[2] Bessason B, Haflidason E. Recorded and numerical strong motion response of a base-isolation bridge[J]. Earthquake Spectra, 2004, 2: 309-332.
[3] 李黎,胡紫东,聂肃非,等. 基于近断层地震LRB桥梁支座屈服力优化 [J]. 振动与冲击, 2011, 30(6): 134-138.
LI Li, HU Zi-dong, NIE Su-fei,et al. Optimum yield strength of LRB for isolated bridges under near-fault earthquake[J]. Journal of Vibration and Shock, 2011, 30(6):134-138.
[4] 沈朝勇,周福霖,温留汉•黑沙. 不同桥梁隔震橡胶支座力学性能对比试验研[J]. 土木工程学报, 2012, 45(S1): 233-237.
SHEN Chao-yong,ZHOU Fu-lin,WENLIUHAN•Hei-sha. Test study on mechanical property of different type of isolators for bridge [J]. China Civil Engineering Journal, 2012, 45(S1):233-237.
[5] 龚一琼,胡勃,袁万城,等. 连续梁桥的减隔震设计[J]. 同济大学学报,2001,29(1):94-98.
GONG Yi-qiong, HU Bo, YUAN Wan-cheng,et al. Seismic isolation design of continuous girder bridges[J]. Journal of TongJi University,2001,29(1):94-98.
[6] 周福霖.工程结构减震控制[M].北京:地震出版社,1997.
[7] 杜修力,韩强,刘晶波. 多维地震作用下隔震桥梁地震反应(II)-理论分析与试验结果比较[J]. 振动与冲击, 2008, 27(9): 66-71.
DU Xiu-li, HAN Qiang, LIU Jing-bo. Seismic response of isolated bridges with LRB under muldi-directional earthquake part(II)-theoretical and comparative analysis [J]. Journal of Vibration and Shock, 2008, 27(9): 66-71.
[8] 范立础,王志强. 我国桥梁隔震技术的应用[J]. 振动工程学报, 1999,12(2):173-181.
FAN Li-chu, WANG Zhi-qiang. Application of seismic isolation technology for bridges in China [J]. Journal of Vibration Engineering, 1999, 12(2):173-181.
[9] 周锡元,李中锡. 规则型隔震桥梁结构的简化分析方法[J]. 土木工程学报, 2001, 34(3):53-58.
ZHOU Xi-yuan, LI Zhong-xi. Simplified formulas for seismic isolation regular bridge[J]. China Civil Engineering Journal, 2001, 34(3):53-58.
[10] Cornell C A, Jalayer F, Hamburger R O, et al. The probabilistic basis for the 2000 SAC/FEMA steel moment frame guidelines[J]. Journal of Structural Engineering, ASCE, 2002, 128( 4):526-533.
[11] 吕大刚,于晓辉. 基于地震易损性解析函数的概率地震风险理论研究[J].建筑结构学报,2013,34(10): 41-48.
LüDa-gang, YU Xiao-hui. Theoretical study of probabilistic seismic risk assessment based on analytical functions of seismic fragility[J]. Journal of Building Structures,2013,34(10):41-48.
[12] Hwang H,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析[J]. 土木工程学报,2004,37(6):47-51.
Hwang H, LIU Jing-bo. Seismic fragility analysis of reinforced concrete bridges [J]. China Civil Engineering Journal, 2004, 37(6):47-51.
[13] Papadrakakis M, Tsompanakis T, Lagaros N D, et al. Reliability based optimization of steel frames under seismic loading conditions using evolutionary computation[J]. Journal of Theoretical and Applied Mechanics, 2004, 42 (3):585- 608.
[14] 日本地震工学会基于性能的抗震设计研究委员会,编.王雪婷,译.基于性能的抗震设计-现状与课题[M].北京:中国建筑工业出版社,2012.
[15] Hueste M B D, Bai J W. Seismic retrofit of a reinforced concrete flat-slab structure: part II seismic fragility analysis[J].Engineering Structures, 2007, 29(6):1178- 1188.
[16] 日本建筑学会, 著. 刘文光, 译. 隔震结构设计[M]. 北京: 地震出版社,2006.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}