SPH统一算法对自由流体冲击弹性结构体问题模拟

沈雁鸣,何 琨,陈坚强,袁先旭

振动与冲击 ›› 2015, Vol. 34 ›› Issue (16) : 60-65.

PDF(1857 KB)
PDF(1857 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (16) : 60-65.
论文

SPH统一算法对自由流体冲击弹性结构体问题模拟

  • 沈雁鸣,何  琨,陈坚强,袁先旭
作者信息 +

Numerical simulation of free surface flow impacting elastic structure with SPH uniform method

  • SHEN Yan-ming,HE Kun,CHEN Jian-qiang,YUAN Xian-xu
Author information +
文章历史 +

摘要

对自由流体冲击弹性结构体涉及的自由界面运动、弹塑性变形、流固耦合作用等问题进行模拟时要求能有效计算介质运动变形与流固间耦合作用。利用光滑粒子流体动力学方法将流体、弹性体视为连续介质,用统一的N-S方程与虚拟压缩状态方程求解。基于初始粒子类型划分提出新的介质接触算法,通过在结构体表面增加结构体表面粒子,使流体与弹性体介质间相互作用实现稳定传递。计算结果表明,所用SPH统一算法与接触算法能准确有效模拟自由流体冲击弹性结构体变形回弹过程。

Abstract

Free surface flows impacting elastic structure are common problems, usually referring to interface track, elastic or plastic deformation and fluid-structure interaction. To simulate these problems, it has to capture the deformation of interfacial flow and compute the fluid structure coupling interaction accurately. In this paper, a SPH uniform method where both fluid and solid phases are described by smoothing particle hydrodynamics is present, solving uniform continuous medium governing equations and weekly pressure state equation. A new contact algorithm with the structure surface particles being treated as virtual particles is developed. The virtual particles would be defined in initial particle configuration, contain both of fluid and structure particle characters and produce repulsive force to prevent the penetration. Compared numerical results with experiments, it is demonstrated that the SPH uniform method with the new contact algorithm can be used to simulate free surface impacting elastic structure problems easily and accurately. 

关键词

流固耦合 / 变形回弹 / SPH方法 / 接触算法

Key words

 fluid-structure interaction;deformation resilience / smoothed particle hydrodynamics / contact algorithm

引用本文

导出引用
沈雁鸣,何 琨,陈坚强,袁先旭. SPH统一算法对自由流体冲击弹性结构体问题模拟[J]. 振动与冲击, 2015, 34(16): 60-65
SHEN Yan-ming,HE Kun,CHEN Jian-qiang,YUAN Xian-xu. Numerical simulation of free surface flow impacting elastic structure with SPH uniform method[J]. Journal of Vibration and Shock, 2015, 34(16): 60-65

参考文献

[1] Gingold R A , Monaghan J J. Smoothed particle hydro- dynamics: theory and application to non-spherical stars[J]. Monthly Notices R. Astronomy Soc., 1977, 181: 375- 389.
[2] 许庆新,沈荣瀛,周海亭. SPH方法在剪切式碰撞能量吸收器中的应用[J]. 振动与冲击,2007,26(9): 108-111.
XU Qing-xin, SHEN Rong-ying, ZHOU Hai-ting. Applying sph method to shearing energy absorbers[J].  Journal of Vibration and Shock, 2007, 26(9): 108-111.
[3]郑晓梅,徐志宏,汤文辉,等. 基于二阶Godunov格式的SPH方法模拟弹塑性波的传播[J].振动与冲击,2011,30(2): 60- 64. 
ZHENG Xiao-mei, XU Zhi-hong, TANG Wen-hui, et al. Simulation of elastic-plastic wave propagation based on smoothed particle hydrodynamics method with second order Godunov scheme [J]. Journal of Vibration and Shock, 2011, 30(2): 60-64.
[4] 初文华,张阿漫,明付仁,等. SPH-FEM耦合算法在爆炸螺栓解锁分离过程中的应用[J]. 振动与冲击, 2012, 31(23): 197- 202.
CHU Wen-hua, ZHANG A-man, MING Fu-ren, et al. Application of three-dimensional SPH-FEM coupling method in unlocking process of an explosion bolt [J]. Journal of Vibration and Shock, 2012, 31(23): 197-202.
[5] Oger G, Doring M, Alessandrini B,et al. Two-dimensional SPH simulations of wedge water entries[J]. Journal of Computational Physics, 2006, (213): 803-822.
[6] Gong K, Liu H, Wang B L. Water entry of a wedge based on SPH model with an improved boundary treatment[J]. Journal of Hydrodynamics , 2009, 21(6): 750-757.
[7] John O H. Theoretical manual[M]. Livermore Software Technology Corporation(LSTC), 1998.
[8] 肖毅华,韩旭,胡德安. 流体与结构相互作用问题的FE-SPH 耦合模拟[J]. 应用力学学报,2011, 28(1):13-18.
XIAO Yi-hua, HAN Xu, HU De-an. A coupling algorithm of finite element and smoothed particle hydrodynamics[J]. Chinese Journal of Computational Physics,2011, 28(1): 13-18.
[9] 陈小波. 近海风机结构体系环境荷载及动力响应研究[D]. 大连:大连理工大学, 2011.
[10] Antoci C, Gallati M, Sibilla S.Numerical simulation of fluid- structure interaction by SPH[J].  Computers and Structures, 2007, 85: 879-890.
[11] Rafiee A, Thiagarajan K P. An SPH projection method for simulating fluid-hypoelastic structure interaction[J].  Comput Methods Appl Mech. Engrg., 2009, 198: 2785-2795.
[12] Amini Y, Emdad H. Farid M. A new model to solve fluid-hypo-elastic solid interaction using the smoothed particle hydrodynamics (SPH) method [J]. European Journal of Mechanics B/Fluid,2011, 30: 184-194.
[13] Liu Mou-bin, Shao Jia-ru, Li Hui-qi. Numerical simulation of hydro-elastic problems with smoothed particle hydro- dynamics method[J]. Journal of Hydrodynamics, 2013, 25(5): 673-682.
[14] Monaghan J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994, 110: 399-406.
[15] Swegle J W, Attaway S W. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations[R]. New Mexico,US: SAND95-0311, Sandia, Albuquerque, 1995.
[16] Gray J P, Monaghan J J, Swift R P. SPH elastic dynamics [J]. Comput. Methods Appl. Mech. Eng., 2001, 190: 6641-6662.
[17] Liu G R, Liu M B. Smoothed particle hydrodynamics: a meshfree particle method [M]. World Scientific Publishing Co Pte Ltd ,2003.

PDF(1857 KB)

Accesses

Citation

Detail

段落导航
相关文章

/