为克服离散化模型弊端,使线缆能适应航天器内复杂空间约束工况,基于弹性细杆思想,提出含空间约束的航天器线缆力学建模方法建立线缆连续型力学模型。通过线缆惯性坐标系与局部坐标系描述线缆空间位置与形态,推导考虑线缆自重与空间约束作用的静力平衡方程,分析布线过程中典型空间约束工况,并构建无约束、端点约束、接触面约束及卡箍约束下线缆力学模型。用数值方法对典型约束工况下线缆力学模型进行计算与分析,获得线缆在无约束、接触面约束及卡箍约束下的受力规律。结果表明,布线过程中合理组合卡箍约束与接触面约束可有效提高线缆的力学性能,从而验证所建模型的普适性与可行性。
Abstract
In order to overcome drawbacks of the discrete model and adapt to the complex spatial constraints in spacecraft, a mechanic modeling method of spacecraft cable considering spatial constraints is proposed based on thin elastic rod. And continuous mechanic model of the cable is established. The spatial position and attitude of the cable are described by inertial coordinate system and local coordinate system. And then, static equilibrium equation of the cable considering deadweight and spatial constraints is deduced. Typical conditions of space constraints in the routing process are analyzed. Furthermore, mechanic models of the cable with none constraint, endpoint constraint, contact surface constraint and clamp constraint are established, and they are solved and analyzed using the numerical method. Regularities of forces of the cable with none constraint, contact surface constraint and clamp constraint are obtained. The results show that mechanic properties of the cable can be improved effectively by combining the clamp constraint and contact surface constraint reasonably in the routing process. Universality and feasibility of the model are verified. Therefore, conclusions have important academic value and engineering significance to the mechanic modeling of the flexible cable and routing process.
关键词
柔性线缆 /
力学建模 /
空间约束 /
仿真分析
{{custom_keyword}} /
Key words
flexible cable /
mechanic modeling /
spatial constraints /
simulation analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Hergenrother E, Dahne P. Real-time virtual cables based on kinematic simulation[C].// Proceedings of the WSCG, 2000: 402-409.
[2] Loock A, Schomer E. A virtual environment for interactive assembly simulation: from rigid bodies to deformable cables[C].//5th World Multiconference on Systemics, Cybernetics and Informatics (SCI'01), 2001: 325-332.
[3] Quisenberry J E, Arena A S. Discrete cable modeling and dynamic analysis[C].//44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006: 1-16.
[4] 刘检华,万毕乐,宁汝新. 虚拟环境下基于离散控制点的线缆装配规划技术[J].机械工程学报,2006,42(8):125-130.
LIU Jian-hua, WAN Bi-le, NING Ru-xin. Realization technology of cable harness process planning in virtual environment based on discrete control point modeling method[J]. Journal of Mechanical Engineering, 2006, 42(8): 125-130.
[5] 刘娟,黄维平. 钢悬链式立管涡激振动流固耦合非线性分析方法研究[J]. 振动与冲击,2014,33(3):41-45.
LIU Juan, HUANG Wei-ping. Fluid-structure interaction analysis for VIV of steel catenary risers[J]. Journal of Vibration and Shock, 2014, 33(3): 41-45.
[6] Shi Y, Hearst J E. The kirchhoff elastic rod, the nonlinear schrodinger equation, and DNA supercoiling[J]. The Journal of Chemical Physics, 1994, 101: 5186-5200.
[7] Schlick T. Modeling superhelical DNA: recent analytical and dynamic approaches[J]. Current Opinion in Structural Biology, 1995, 5(2): 245-262.
[8] Coyne J. Analysis of the formation and elimination of loops in twisted cable[J]. IEEE Journal of Oceanic Engineering, 1990, 15(2): 72-83.
[9] 刘检华,赵涛,王春生,等. 虚拟环境下活动线缆物理特性建模与运动仿真技术[J]. 机械工程学报,2011,47(9):117- 124.
LIU Jian-hua, ZHAO Tao, WANG Chun-sheng, et al. Motional cable harness physical characteristic oriented modeling and kinetic simulation technology in virtual environment[J]. Journal of Mechanical Engineering, 2011, 47(9): 117-124.
[10]Wang Chun-sheng, Ning Ru-xin, Liu Jian-hua, et al. Dynamic simulation and disturbance torque analyzing of motional cable harness based on Kirchhoff rod model[J]. Chinese Journal of Mechanical Engineering, 2012, 25(2): 346-354.
[11]刘延柱. 弹性细杆的非线性力学[M]. 北京:清华大学出版社,2006.
[12] Liu Yan-zhu. On dynamics of elastic rod based on exact Cosserat model[J]. Chinese Physics B, 2009, 18(1): 1-8.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}