压膜阻尼作用下微机械谐振器动力学分析

张琪昌,周凡森,王炜

振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 124-130.

PDF(1725 KB)
PDF(1725 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 124-130.
论文

压膜阻尼作用下微机械谐振器动力学分析

  • 张琪昌,周凡森,王炜
作者信息 +

The Dynamics Characteristics Analysis of Micro-Mechanical-Resonator Under The Squeeze Film Damping

  • ZHANG Qi-chang,ZHOU Fan-sen,WANG Wei
Author information +
文章历史 +

摘要

静电驱动微机械谐振器由于其高频率、低功耗和小型化被广泛应用于工作在空气中和液体中的化学传感器和生物物种传感器中。对于微机械谐振器,作为表面效应的空气阻尼以及三次非线性静电刚度会显著影响器件的动态响应特性。本文通过压膜阻尼理论,探究了双端固支梁在自由振动过程中由于环境压力引起的空气阻尼和三次非线性静电刚度对微梁的运动形态、谐振响应等性能参数的影响,发现了双极板微谐振器振动特性与环境压力以及立方非线性静电刚度的关系。结果表明:环境压力的增加会使微机械谐振器的共振频率增加,振动的幅值以及共振漂移的幅度减小。微机械谐振器在小位移振动时,通过对幅频曲线的分析发现,三次非线性静电刚度会使微机械谐振器表现出或软或硬的非线性特性且不可忽略。

Abstract

Electrostatic actuated micromechanical resonators are widely used in the chemical sensor and the sensor of biological species, which work in the air or liquid, as they take advantage of high frequency, low-power consumption and small size. The air damping of the surface effect and cubic nonlinear static electricity can significantly affect the dynamic response characteristics of the micromechanical resonator. In this paper, via squeeze-film damping theory, the effects of air damping due to ambient pressures during free vibration and cubic nonlinear electrostatic force on the patterns of movement and response performance were investigated in detail. The relationship between ambient pressure and nonlinear electrostatic force are found. It indicates that the resonance frequencies of micromechanical resonator will increase with the increase of the ambient pressure, while the vibration amplitudes and the drift of the resonance will decline with the increase of the ambient pressure. And it also indicates that cubic nonlinear electrostatic force will make MEMS resonators exhibit softening or hardening nonlinear characteristics and can not to be ignore by amplitude frequency curve for small amplitude vibration.

关键词

微机械谐振器 / 压膜阻尼 / 环境压力

Key words

micro-mechanical-resonator / squeeze film damping / ambient pressure

引用本文

导出引用
张琪昌,周凡森,王炜. 压膜阻尼作用下微机械谐振器动力学分析[J]. 振动与冲击, 2015, 34(17): 124-130
ZHANG Qi-chang,ZHOU Fan-sen,WANG Wei. The Dynamics Characteristics Analysis of Micro-Mechanical-Resonator Under The Squeeze Film Damping[J]. Journal of Vibration and Shock, 2015, 34(17): 124-130

参考文献

[1] 岳东旭, 于虹, 袁卫民. 静电驱动的亚微米悬臂梁谐振器非线性特性[J]. 光学 精密工程, 2011, 19(4): 783.
    YUE Dong-xu, YU Hong, YUAN Wei-min. Nonlinear characteristics of sub micron cantilever beam resonators actuated by statical electricity[J]. Optics and Precision Engineering, 2011, 19(4): 783
[2] Ruzziconi L, Bataineh AM, Younis MI, et al. Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: experimental investigation and reduced-order modeling[J]. Journal of Micromechanics and Microengineering, 2013, 23(7): 075012.
[3] Mestrom R, Fey R, Van Beek J, et al. Modelling the dynamics of a MEMS resonator: Simulations and experiments[J]. Sensors and Actuators A: Physical, 2008, 142(1): 306-315.
[4] Mestrom R, Fey R, Phan K, et al. Experimental validation of hardening and softening resonances in a clamped-clamped beam MEMS resonator[J]. Procedia Chemistry, 2009, 1(1): 812-815.
[5] Mestrom R, Fey R, Phan K, et al. Simulations and experiments of hardening and softening resonances in a clamped–clamped beam MEMS resonator[J]. Sensors and Actuators A: Physical, 2010, 162(2): 225-234.
[6] Gologanu M, Bostan C G, Avramescu V, et al. Damping effects in MEMS resonators[C] //Semiconductor Conference (CAS), 2012 International. IEEE, 2012, 1: 67-76.
[7] Belardinelli P, Brocchini M, Demeio L, et al. Dynamical characteristics of an electrically actuated microbeam under the effects of squeeze-film and thermoelastic damping[J]. International Journal of Engineering Science, 2013, 69: 16-32.
[8] Feng C, Jiang L, Lau W M. Dynamic characteristics of a dielectric elastomer-based microbeam resonator with small vibration amplitude[J]. Journal of Micromechanics and Microengineering, 2011, 21(9): 095002.
[9] Wu G, Xu D, Xiong B, et al. Analysis of air damping in micromachined resonators[C] //Nano/Micro Engineered and Molecular Systems (NEMS), 2012 7th IEEE International Conference on. IEEE, 2012: 469-472.
[10] Nigro S, Pagnotta L, Pantano M F. A numerical approach for modeling squeeze-film damping in rigid microstructures including rarefaction effects[C] //Proceedings of the 11th WSEAS international conference on Instrumentation, Measurement, Circuits and Systems, and Proceedings of the 12th WSEAS international conference on Robotics, Control and Manufacturing Technology, and Proceedings of the 12th WSEAS international conference on Multimedia Systems & Signal Processing. World Scientific and Engineering Academy and Society (WSEAS), 2012: 37-42.
[11] Keyvani A, Sadeghi M H, Rezazadeh G, et al. Effects of squeeze film damping on a clamped-clamped beam MEMS filter[J]. Journal of Micro-Bio Robotics, 2013, 8(2): 83-90.
[12] Gualdino A, Chu V, Conde J P. Pressure effects on the dynamic properties of hydrogenated amorphous silicon disk resonators[J]. Journal of Micromechanics and Microengineering, 2012, 22(8): 085026.
[13] Zhang W M, Meng G. Nonlinear dynamic analysis of electrostatically actuated resonant MEMS sensors under parametric excitation[J]. Sensors Journal, IEEE, 2007, 7(3): 370-380.
[14] 张文明, 孟光, 周健斌, 等. 参数激励下静电驱动 MEMS 共振传感器的非线性动力特性研究[J]. 力学季刊, 2009, 30(1): 44-48.
    ZHANG Wen-ming, MENG Guang, ZHOU Jian-bin, et al.Nonlinear Dynamic Characteristics of Electrostatically Actuated MEMS Resonant Sensors under Parametric Excitation[J]. Chinese Quarterly of Mechanics, 2009, 30(1): 44-48.
[15] 史晓晶, 陈德勇, 王军波, 等. 一种新型微机械谐振式压力传感器研究[J]. 传感技术学报, 2009 (6): 790-793.
    SHI Xiao-jing, CHENG De-yong, WANG Jun-bo, et al. Research of a Novel Micromachined Resonant Pressure Sensor[J]. Chinese Journal of Sensors and Actuators,2009 (6):790-793.
[16] 王伟, 刘军洁. Z 轴微机械陀螺仪的空气阻尼分析[J]. 西安工业大学学报, 2010, 30(3): 219-223.
    Wang Wei, Liu Jun-jie. The Analysis of Z Axis Micromachined Gyroscope under Air Damping[J]. Journal of Xi'an Technological University, 2010, 30(3): 219-223.
 

PDF(1725 KB)

1028

Accesses

0

Citation

Detail

段落导航
相关文章

/