时序回归支持向量机在卫星振动预测中的应用

付忠广1, 曹宏芳1, 齐敏芳1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 137-141.

PDF(1249 KB)
PDF(1249 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 137-141.
论文

时序回归支持向量机在卫星振动预测中的应用

  • 付忠广1, 曹宏芳1, 齐敏芳1
作者信息 +

Prediction for Remote Sensing Satellite Vibration Based on Time Sequence Regression and SVM Algorithm

  • FU Zhong-guang1,CAO Hong-fang1,QI Min-fang1
Author information +
文章历史 +

摘要

将支持向量机算法与时间序列原理相结合,可构造出基于时间序列的支持向量机模型。通过对大量遥感卫星振动数据进行分析,得出该卫星振动规律为有随机波动成分的简谐振动。应用时间序列的原理,动态更新模型训练集和预测集,构建基于时序回归的支持向量机在线预测模型。模型测试结果表明,这种方法可以比较准确有效的实现振动趋势的提前预测,为振动抑制措施的快速实现提供帮助。

Abstract

A support vector machine (SVM) model based on time series principle can be constructed by support vector machine algorithm and time series. From the analysis about a large number of remote sensing satellites vibration data, we can find the vibration law is the harmonic vibration with some random fluctuations. Training set and prediction set of the model can be dynamically updated by using Principle of time series, and then build the online prediction model .The model test results show that this method can predict accurate vibration trends in advance, offering help to the rapid vibration suppression measures.

关键词

遥感卫星振动 / 支持向量机 / 时间序列 / ARMA模型 / 在线预测

Key words

remote sensing satellite Vibration / SVM;time series / ARMA model / online prediction

引用本文

导出引用
付忠广1, 曹宏芳1, 齐敏芳1. 时序回归支持向量机在卫星振动预测中的应用[J]. 振动与冲击, 2015, 34(17): 137-141
FU Zhong-guang1,CAO Hong-fang1,QI Min-fang1. Prediction for Remote Sensing Satellite Vibration Based on Time Sequence Regression and SVM Algorithm[J]. Journal of Vibration and Shock, 2015, 34(17): 137-141

参考文献

[1]关新.高分辨率遥感卫星隔振与姿态控制一体化设计[D].北京:清华大学,2012.
GUAN Xin. Integrated design of vibration isolation and attitude control for high resolution remote sensing satellites[D].Beijing:Tsinghua University,2012.
[2]白圣建.挠性航天器的建模与控制方法研究[D].长沙:国防科技大学,2005.
BAI Sheng-jian. Research on modeling and control of flexiabe spacecraft[D].Changsha:National University Of Defense Technology,2005.
[3]王晓磊,吴宏鑫.挠性航天器振动抑制的自适应方法及实验研究[J].宇航学报,2005,26(3):75-81.
WANG Xiao-lei, WU Hong-xin. Adaptive control scheme and experiment for vibrationsuppression of flexible spacecraft[J]. Journal of Astronautics, 2005,26(3):75-81.
[4]孙多青.分层模糊广义预测控制及其在挠性航天器振动抑制中的应用[J].宇航学报,2009,30(4):37-43.
  SUN Duo-qing. Hierarchical Fuzzy Generalized Predictive Control and Its Application in Vibration Suppression of Flexible Spacecraft[J]. Journal of Astronautics, 2009,30(4):37-43.
[5]张清周,黄源,赵明.SVM的信息粒化时序回归预测城市用水量[J].供水技术,2012,6(4),43-46.
ZHANG Qing-zhou, HUANG Yuan,ZHAO Ming. Prediction of urban water consumption by SVM information granulation within time sequence regression[J].Water Technology,2012,6(4),43-46.
[6]喻胜华,肖雨峰.基于信息粒化和支持向量机的股票价格预测[J].财经理论与实践,2011,32(174):44-47.
YU Sheng-hua, XIAO Yu-feng. Forecasting method of stock price based on information granulation and support vector machine[J].The Theory and Practice of Finance and Economic.,2011,32(174):44-47.
[7]付忠广,黎瑜春,栾东存. 基于组合模型的转子振动在线预测[J].汽轮机技术.2012,54(4)75-78.
FU Zhong-guang,LI Yu-chun,LUAN Dong-cun. A Hybrid Model for Rotor Vibration Online Forecasting[J]. Turbine Technology,2012,54(4)75-78.
[8]杨红,孙卓,刘夏平,等.基于多最小二乘支持向量机的桥梁温度挠度效应的分离[J].振动与冲击,2014,33(1).71-76.
YANG Hong,SUN Zhuo,LIU Xia-ping,etal..Separation of bridge temperature deflection effect based on M-LS-SVM[J]. Journal of Vibration and Shock. 2014,33(1).71-76.
[9]陈金凤.支持向量机回归算法的研究与应用[D].无锡:江南大学,2008.
LU Jin-feng. Research and application about support vector machine regression algorithm.Wuxi:Jiangnan university,2008.
[10]郑严,程文明,程跃.基于支持向量机回归的结构可靠性分析[J].机械科学与技术.2011,30(1),52-54.
ZHENG yan, CHENG Wen-ming,CHENG Yue.Structural Reliability Analysis Based on Support Vector Regression[J].Mechanical Science and Technology for Aerospace Engineering. 2011,30(1),52-54.
[11]易丹辉.时间序列分析方法与应用[M].北京:中国人民大学出版社.2011.
   YI Dan-hui.Time series analysis methods and applications[M].Beijing: China Renmin University Press.2011.
[12]景源.电站锅炉入炉煤质发热量的反向建模研究[D].北京:华北电力大学,2012.
JING Yuan. Research about coal heat reverse model  in power plant[D].Beijing:North China Electric Power University,2012.
[13]戈志华.基于非线性理论的汽轮机轴系振动故障研究[D].北京:华北电力大学,2000.
   GE Zhihua. Study on vibration Fault of turbine shafts based on non-liner theory[D].Beijing: North China Electric Power University,2000.
[14]袁胜发,褚福磊.支持向量机及其在机械故障诊断中的应用[J]. 振动与冲击,2007, 26(11): 29-35.
.  YUAN Sheng-fa,CHU Fu-lei.The application of SVM in mechanical fault dignosis[J]. Journal of vibration and shock, 2007, 26(11): 29-35.
[15] MATLAB中文论坛.MATLAB神经网络30个案例分析[M].北京:北京航天航空大学出版社,2010.
   I love Matlab.30 case analysis about MATLAB Neural Networks[M]. Beijing:Beijing University of Aeronautics and Astronautics Press,2010.

PDF(1249 KB)

443

Accesses

0

Citation

Detail

段落导航
相关文章

/