材料和结构参数对悬壁梁式压电振子机电耦合性能的影响

林政,张永良

振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 147-151.

PDF(1333 KB)
PDF(1333 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 147-151.
论文

材料和结构参数对悬壁梁式压电振子机电耦合性能的影响

  • 林政 , 张永良
作者信息 +

Effect of physical and geometrical parameters on the electromechanical coupling characteristics of a cantilevered piezoelectric vibrator

  •   Lin Zheng   Zhang Yongliang
Author information +
文章历史 +

摘要

本文对材料和结构参数对压电和基板不等长的矩形截面悬臂梁式双晶压电振子机电耦合性能影响进行研究。由Hamilton原理推导了压电振子振动方程模型,并试验验证了模型的准确性。理论分析显示,当电路阻抗匹配时,转换效率最大,且当粘性阻尼系数相同时,最优转换效率随着机电耦合系数增大而增大。压电振子机电耦合系数和压电材料机电耦合因子成正比;随着压电与基板模量比增大,机电耦合系数增大;压电与基板密度比对机电耦合系数影响微弱;机电耦合系数随压电与基板长度比和厚度比都呈先增后减趋势,存在最优长度比和厚度比使机电耦合系数达到最大值。结构优化后的机电耦合系数随模量比的增加而增大;不同模量比和密度比条件下,最佳长度比变化较小,总体变化范围为0.6~0.7;模量比对最佳厚度比影响显著,随着模量比增大最佳厚度比减小。研究成果可用以指导压电振子的设计。

Abstract

In this paper, the effect of physical and geometrical parameters on the electromechanical coupling characteristics of a one-step cantilevered piezoelectric energy harvester is studied. The model equation governing the vibration of a piezoelectric vibrator is derived based on the Euler-Bernoulli beam assumption in the linear and elastic regime, and validated through comparison of theoretical results with experimental ones. Results reveal that impedance matching leads to the maximum mechanical to electrical energy transfer efficiency. And the impedance-matching efficiency increases with the electromechanical coupling coefficient given a constant air and structural damping. The coupling coefficient increases linearly with the squared material electromechanical coupling factor, and is affected significantly by the piezoelectrics-to-substructure modulus, length and thickness ratios, while the effect of piezoelectrics-to-substructure density ratio is relatively small. It is shown that the coupling coefficient increases with the modulus ratio increasing. And with the length and thickness ratios increasing, the coupling coefficient increases initially then decreases after it reaches the maxima. The optimal length ratio, at which the maxima is reached, varies between 0.6~0.7 among a wide span of materials. And the optimal thickness ratio greatly varies depending on the modulus and density ratios. It monotonically increases with the modulus ratio. 

 

关键词

压电俘能 / 优化 / 材料特性 / 结构尺寸

Key words

piezoelectric energy harvesting / optimization / material properties / geometrical parameters

引用本文

导出引用
林政,张永良 . 材料和结构参数对悬壁梁式压电振子机电耦合性能的影响[J]. 振动与冲击, 2015, 34(17): 147-151
Lin Zheng Zhang Yongliang . Effect of physical and geometrical parameters on the electromechanical coupling characteristics of a cantilevered piezoelectric vibrator[J]. Journal of Vibration and Shock, 2015, 34(17): 147-151

参考文献

[1] Sodano H A, Inman D J, Park G. A review of power harvesting from vibration using piezoelectric materials[J]. Shock and Vibration Digest, 2004, 36(3): 197-206.
[2] Anton S R, Sodano H A. A review of power harvesting using piezoelectric materials (2003–2006)[J]. Smart Materials and Structures, 2007, 16(3): R1.
[3] Beeby S P, Tudor M J, White N M. Energy harvesting vibration sources for microsystems applications[J]. Measurement science and technology, 2006, 17(12): R175.
[4] Cook-Chennault K A, Thambi N, Sastry A M. Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems[J]. Smart Materials and Structures, 2008, 17(4): 043001.
[5] Rupp C J, Evgrafov A, Maute K, et al. Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells[J]. Journal of Intelligent Material Systems and Structures, 2009, 20(16): 1923-1939.
[6] Dietl J M, Garcia E. Beam shape optimization for power harvesting[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(6): 633-646.
[7] Matova S P, Renaud M, Jambunathan M, et al. Effect of length/width ratio of tapered beams on the performance of piezoelectric energy harvesters[J]. Smart Materials and Structures, 2013, 22(7): 075015.
[8] 邓冠前, 陈仲生, 陶利民. 不同形状压电振子的振动发电行为研究[J]. 压电与声光, 2010, 32(3): 440-443.
DENG Guan-qian, CHEN Zhong-sheng, TAO Lin-min. Study on vibration energy harveseting behaviors of piezoelectric cantilevers with different geometries[J]. Piezoelectrics and Acoustooptics, 2010, 32(3):440-443.
[9] 单小彪, 袁江波, 谢涛, 等. 不同截面形状悬臂梁双晶压电振子发电能力建模与实验研究[J]. 振动与冲击, 2010, 29(4): 177-180.
SHAN Xiao-biao, YUAN Jiang-bo, XIE Tao, et al. Modeling and test of piezoelectric cantilever generators with different shapes [J]. Journal of Vibration and Shock, 2010, 29(4): 177-180.
[10] 姜德龙, 程光明, 曾平, 等. 悬臂梁双压电晶片振子发电性能研究[J]. 机械设计与制造, 2011 (001): 121-123.
JIANG De-long, CHENG Guang-ming, ZENG Ping, et al. The research on piezoelectric cantilever oscillator generator performance[J]. Machinery Design and Manufacture, 2011 (001): 121-123.
[11] 阚君武, 徐海龙, 王淑云, 等.多振子串联压电俘能器性能分析与测试[J].振动与冲击,2013,32(22):79-83.
KAN Jun-wu,XU Hai-long,WANG Shu-yun,et al. Performance analysis and test of an energy harvester with serial-connected piezodiscs[J]. Journal of Vibration and Shock,2013,32(22):79-83.

PDF(1333 KB)

769

Accesses

0

Citation

Detail

段落导航
相关文章

/