超空泡航行体闭环控制动力学特性研究

熊天红1 包伯成2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 167-173.

PDF(2395 KB)
PDF(2395 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 167-173.
论文

超空泡航行体闭环控制动力学特性研究

  • 熊天红1   包伯成2
作者信息 +

Closed-Loop Control Dynamics for Supercavitating Vehicles

  • Xiong Tian-hong 1  BAO Bo-cheng 2
Author information +
文章历史 +

摘要

通过对超空泡航行体的动力学描述,采用分段线性滑行力函数拟合复杂非线性滑行力函数,构建了超空泡航行体闭环控制动力学模型,获得了以反馈控制增益为可变参数的四维混沌系统.利用相轨图、庞加莱映射、分岔图和Lyapunov指数等动力学分析工具,分析了不同反馈控制增益变化时系统复杂的动力学行为.结果表明,超空泡航行体闭环控制动力学行为依赖于各个闭环控制增益,随着这些参数的变化,系统存在分岔、混沌、周期窗、共存吸引子和不完全费根鲍姆树等奇异的非线性物理现象;合理选择反馈增益,能够实现超空泡航行体的稳定航行.研究结果将对超空泡航行体反馈控制器的设计具有重要的指导意义.

Abstract

By describing dynamics of supercavitating vehicles and utilizing a piecewise-linear planing force function to fit the complex nonlinear planing force function, a closed-loop control dynamical model for the supercavitating vehicle is constructed, upon which a four-dimensional chaotic system with feedback control gains as variable parameters is obtained. By using dynamical analysis tools such as phase portrait, Poincaré map, bifurcation diagram and Lyapunov exponent spectrum, complex dynamical behaviors of the system with the variations of different feedback control gains are analyzed. The results indicate that the closed-loop control dynamical behaviors for supercavitating vehicles depend on each closed-loop control gain, resulting in the occurrence of novel nonlinear phenomena with these parameters varying, such as bifurcation, chaos, periodic window, co-existing attractor, imperfect Feigenbaum-tree and so on. The supercavitating vehicles can realize the stable motion by choicing appropriate feedback gain. The researches have an important guiding significance to the feedback controller designs of supercavitating vehicles.

关键词

分岔 / 混沌 / 闭环控制 / 超空泡航行体

Key words

bifurcation / chaos / closed-loop control / supercavitating vehicles

引用本文

导出引用
熊天红1 包伯成2. 超空泡航行体闭环控制动力学特性研究[J]. 振动与冲击, 2015, 34(17): 167-173
Xiong Tian-hong 1 BAO Bo-cheng 2. Closed-Loop Control Dynamics for Supercavitating Vehicles[J]. Journal of Vibration and Shock, 2015, 34(17): 167-173

参考文献

[1] Wang G., Ostoja-Starzewski M. Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil [J]. Applied Mathematical Modeling, 2007, 31: 417-447
[2] Singhal A.K, LI H Y, Athavale M M, et al. Mathematical basis and validation of the full cavitating high-speed torpedo[J]. Journal of Fluids Engineering, 2003, 125: 459-468
[3] Li Qi-tao, He You-sheng, XUE Lei-ping. A numerical simulation of pitching motion of the ventilated supercaviting vehicle around its nose[J]. Chinese Journal of Hydrodrnamics, 2011, 26 (6): 589-685
[4] 李代金,罗凯,党建军,王育才,张宇文. 超空泡水下航行器空间运动建模与弹道仿真[J]. 兵工学报, 2012, 33(8): 956-961
LI Dai-jin,LUO Kai,DANG Jian-jun,WANG Yu-cai,ZHANG Yu-wen. Kinematic Modeling and Trajectory Simulation for Underwater Supercavitating Vehicles[J]. Acta Armamentarii, 2012, 33(8): 956-961
[5] 魏英杰, 王京华, 张嘉钟, 曹伟, 黄文虎. 水下超空泡航行体非线性动力学与控制[J]. 振动与冲击, 2009, 28(6): 179-204
WEI Ying-jie, WANG Jing-hua, ZHANG Jia-zhong, CAO Wei, HUANG Wen-hu. Nonlinear dynam ics and control of underwater supercavitating vehicle[J]. Journal of Vibration And Shock, 2009, 28(6): 179-204
[6] Lin G J, Balachandran B, Abed E H. Nonlinear dynamics and bifurcations of a supercavitating vehicle[J]. IEEE Journal of Oceanic Engineering, 2007, 32(4): 753-761
[7] 包伯成, 胡文, 许建平, 刘中, 邹凌. 忆阻混沌电路的分析与实现[J]. 物理学报, 2011, 60(12): 120502
BAO Bo-cheng , HU Wen, XU Jian-ping, LIU Zhong, Zou Ling. Analysis and implementation of memristor chaotic circuit[J]. Acta Physica Sinica, 2011, 60 (12): 120502
[8] 李群宏, 闫玉龙, 韦丽梅, 秦志英. 非线性传送带系统的复杂分岔[J]. 物理学报, 2013, 62(12): 120505
LI Qun-hong, YAN Yu-long, WEI Li-mei, QIN Zhi-ying. Complex bifurcations in a nonlinear system of moving belt[J]. Acta Physica Sinica, 2013,62(12):120505
[9] Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L. Chaotic memristive circuit: equivalent circuit realization and dynamical analysis[J]. Chinese Physics B, 2011, 20(12): 120502
[10] Lin G J, Balachandran B, Abed E H. Dynamics and control of supercavitating vehicles[J]. Journal of Dynamic Control Systems, Measurement, and Control, 2008,130:021003
[11] Nguyen V, Balachandran B. Supercavitation vechicles with noncylindrical, nonsymmetric cavities: dynamics and instabilities[J]. Journal of Computational and Nonlinear Dynamics, 2011, 6(4): 041001
[12] Lin G J, Balachandran B, Abed E. Supercavitating body dynamics, bifurcation and control[C]. 2005 American Control Conference. Portland, OR, USA. 2005, 6: 691-696
[13] Hassouneh, M A, Vincent N, Balakumar B. Stability analysis and control of supercavitating vehicles with advection delay[J]. Journal of Computational and Nonlinear Dynamics, 2013, 8: 021003
[14] 白涛, 孙尧, 莫宏伟. 分叉分析在水下高速运动体稳定控制中的应用[J]. 哈尔滨工程大学学报, 2008, 29(10): 1067-1075
BAI Tao, SUN Yao, MO Hong-wei. Application of bifurcation analysis to the stability control of underwater high-speed vehicles[J]. Journal of Harbin Engineering University, 2008, 29(10): 1067-1075( in Chinese)
[15] 王京华, 魏英杰, 于开平, 王聪, 黄文虎, 吕瑞. 基于空泡记忆效应的水下超空泡航行体建模与控制[J]. 振动与冲击,2010, 29(8):160-163
WANG Jing-hua, WEI Ying-jie, YU Kai-ping, WANG Cong, HUANG Wen-hu, LB Rui. Modeling and control of underwater supercavitating vehicle based on memory effect of cavity[J]. Journal of Vibration And Shock, 2010, 29(8): 160-163
[16] 李魁彬,王安稳,邓磊.变速超空泡航行体壳结构的动力响应分析[J].振动与冲击,2013,32(4):138-141.
LI Kui-bin, WANG An-wen, DENG Lei. The influence of cavity shape on maneuvering rotational movement of supercavitating vehicle[J]. Journal of Vibration and Shock, 2013, 32(4):138-141.
[17] 包伯成, 胡文, 刘中, 康祝圣, 许建平. DOG 小波映射伸缩和平移的动力学分析[J]. 物理学报, 2009, 29(8): 2239-2247
BAO BO-cheng, HU Wen, LIU Zhong, KANG Zhu-sheng, XU Jian-ping. Dynamical analysis of DOG wavelet mapping with dilation and translation[J]. Acta Physica Sinica, 2009, 58(4): 2239-2247

PDF(2395 KB)

813

Accesses

0

Citation

Detail

段落导航
相关文章

/