基于磁链耦合分析的无轴承永磁同步电机通用数学模型

朱熀秋,秦英,鞠金涛,李发宇

振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 191-198.

PDF(2157 KB)
PDF(2157 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 191-198.
论文

基于磁链耦合分析的无轴承永磁同步电机通用数学模型

  • 朱熀秋,秦英,鞠金涛,李发宇
作者信息 +

General model of BPMSM based on flux linkage intersection analysis

  • ZHU Huang-qiu, QIN Ying,JU Jin tao,LI Fa yu
Author information +
文章历史 +

摘要

由于无轴承永磁同步电机内部有两套极对数不等的定子绕组(即转矩绕组与悬浮力绕组),所以电机气隙内存在着转矩绕组气隙磁场与悬浮力绕组气隙磁场两种极对数不等的磁场。对转矩绕组与悬浮力绕组之间的磁链耦合情况的分析,是建立精确数学模型的基础。本文通过应用机械/电气坐标系变换方法详细分析了不同极对数下转矩绕组与悬浮力绕组之间的磁链交链情况,并证明了当转矩绕组极对数PM=1,悬浮力绕组极对数PB=2(或PM=2,PB=1)时转矩绕组磁链ψM与悬浮力绕组磁链ψB之间相互耦合。当转矩绕组极对数PM与悬浮力绕组极对数PB均大于等于2且满足PB= PM±1时,转矩绕组磁链ψM与悬浮力绕组磁链ψB之间没有相互交链,该证明方法概念清晰、简单直观、便于理解。同时基于该证明结论建立了当转矩绕组极对数PM与悬浮力绕组极对数PB均大于等于2且满足PB= PM±1时的无轴承永磁同步电机的通用数学模型。本文所提出的通用数学模型为无轴承永磁同步电机仿真与实验研究提供了理论依据。

Abstract

A bearingless permanent magnet synchronous motor(BPMSM) having two sets of stator windings with different poles-pairs, namely torque windings and suspension force windings, so there are two types of air-gap magnetic fields, torque windings’ and suspension force windings’, with different poles-pairs in the motor. The analysis of the flux linkage intersection between the two sets of windings is the foundation of setting up the precise mathematical model of the motor. Through the application of mechanical/electrical transformation method, this paper refers to a detailed analysis of the flux linkage intersection between torque windings and suspension force windings. And proved that when the pole-pairs of torque windings and suspension force windings PM=1 ,PB=2, respectively(or PB=1, PM=2) , magnetic chain of the torque winding and suspension force winding are mutual coupling.While both of the pole-pairs of torque windings and suspension force windings PM and PB are greater than or equal to 2 and meet the relationship:PB= PM±1, the phenomenon of the flux linkage intersection between torque windings and suspension force windings will not exit any more.This method of proof is simple, intuitive and easy to understand with a clear concept.What’s more ,the general mathematical model of BPMSM are setted up based on the conclusion proved abrove, under the situation that both of the pole-pairs of torque windings and suspension force windings PM and PB are greater than or equal to 2 and meet the relationship:PB= PM±1. At last, general mathematical model presented in this paper for BPMSM provides a theoretical basis for simulation and experimental study of BPMSM. 
 

关键词

无轴承永磁同步电机 / 磁链分析 / 数学建模 / 仿真和实验研究

Key words

BPMSM / magnetic chain analysis / mathematical modeling / simulation and experimental results study

引用本文

导出引用
朱熀秋,秦英,鞠金涛,李发宇. 基于磁链耦合分析的无轴承永磁同步电机通用数学模型[J]. 振动与冲击, 2015, 34(17): 191-198
ZHU Huang-qiu, QIN Ying,JU Jin tao,LI Fa yu. General model of BPMSM based on flux linkage intersection analysis[J]. Journal of Vibration and Shock, 2015, 34(17): 191-198

参考文献

[1] Asama J,Amada M,Tanabe N et al. Evaluation of a Bearingless PM Motor With Wide MagneticGaps[J] .IEEE Transactions on energy conversion ,2010,25,(4):957---964.
[2] Miyamoto N, Enomoto T, Amada M, et al. Suspension characteristics measurement of a bearingless motor [J]. IEEE Transactions on Magnetics, 2009, 45(6):2795-2798.
[3] Shinnaka S. A new speed-varying ellipse voltage injection method for sensorless drive of permanent magnet syschronous motors with pole saliency: new PLL method using high-frequency current component multiplied signal [J].  IEEE Transactions on Industry Applications, 2008, 44(3): 777-778
[4] Ogasawara K, Murata T, Tamura J, et al. High performance control of permanent syschronous motor based on magnetic energy model by sliding model control[C]. Proceedings of IEEE Power Electronics and Applications, Dresden, 2005.
[5] 朱熀秋, 郝晓红. 无轴承永磁薄片电机转子不平衡振动补偿控制[J]. 系统仿真学报, 2010, 22(2): 453-457.
ZHU Huang-qiu, HAO Xiao-hong. Compensation control of rotor unbalance vibration on bearingless permanent magnet slice motors[J]. Journal of System Simulation, 2010, 2(22): 453-457.
[6] 周瑾, 倪佐僖. 基于不平衡响应的磁悬浮轴承刚度阻尼辨识方法研究[J]. 振动与冲击, 2013,32(3): 29-34.
ZHOU Jin, NI Zuo-xi. Identification method for stiffness and damping of magnetic bearings based on rotor unbalance response[J]. Journal of vibration and shock, 2013,32(3): 29-34.
[7] Chiba A, Power D T, Rahman M A. Characteristics of a bearingless induction motor. IEEE Trans Magn, 1991, 27(6): 5199-5201
[8] Amrhein W, Silber S, Nenninger K. Levitation forces in beariingless permanent magnet motors. IEEE, Trans Magn, 1999, 35(5):4052-4054
[9] 成秋良. 无轴承永磁同步电机控制及实验研究[D]. 镇江: 江苏大学硕士学位论文, 2008.
[10] 潘伟,左文全,朱熀秋,魏劲夫. 无轴承永磁同步电机转子初始定位策略[J]. 江苏大学学报(自然科学版),2012,33(3):293-299.
PAN Wei, ZUN Wenquan, ZHU Huangqiu, WEI Jinfu. Initial rotor orientation strategy of bearingless permanent magnet synchronous motor[J]. Journal of Jiangsu University(Natural Science Edition),2012, 2012,33(3):293-299.

PDF(2157 KB)

Accesses

Citation

Detail

段落导航
相关文章

/