基于量子遗传算法优化RVM的滚动轴承智能故障诊断

王波1,2 刘树林1 蒋超1 张宏利1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 207-212.

PDF(1462 KB)
PDF(1462 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 207-212.
论文

基于量子遗传算法优化RVM的滚动轴承智能故障诊断

  • 王波1,2  刘树林1 蒋超1 张宏利1
作者信息 +

Rolling bearing intelligent fault diagnosis based on RVM optimized by Quantum genetic algorithm

  • WANG Bo1,2 LIU Shu-lin1 JIANG Chao1 ZHANG Hong-li1
Author information +
文章历史 +

摘要

提出了基于量子遗传算法(QGA)优化相关向量机(RVM)核函数参数的方法,通过仿真比较了量子遗传算法与其它方法在核函数参数优化方面的性能,结果表明基于量子遗传算法优化出的算法性能优于其它方法的优化性能。将基于量子遗传算法优化的相关向量机(QGA-RVM)应用于滚动轴承的故障诊断;采用总体平均经验模态分解(EEMD)将滚动轴承故障信号自适应地分解成多个内禀模态函数(IMF),将IMF能量作为故障特征输入到QGA-RVM进行最终的故障诊断。结果表明,该方法能够快速准确地诊断出滚动轴承故障,验证了该方法的有效性和稳定性;此外,通过与支持向量机(SVM)的对比分析,显示了RVM在智能故障诊断应用中的优越性。

Abstract

A novel method to optimize Relevance Vector Machine (RVM) kernel function parameters based on Quantum Genetic Algorithm (QGA) was proposed. It was compared with other optimization algorithms by simulation experiments, and the results showed that the optimization method based on QGA is superior to other optimization methods. The model of RVM optimized by QGA (QGA-RVM) was applied to fault diagnosis of rolling bearing. Fault signals were decomposed adaptively into some intrinsic mode functions (IMFs) by ensemble empirical mode decomposition (EEMD), and the IMF energies, as fault features, were inputted into QGA-RVM for final fault diagnosis. Experimental results showed that the proposed method can diagnose faults rapidly and accurately, and they also demonstrated the validity and stability. Moreover, the comparison with Support Vector Machine (SVM) showed the superiority of RVM in intelligent fault diagnosis.

关键词

量子遗传算法 / 故障诊断 / 相关向量机 / EEMD

Key words

quantum genetic algorithm / fault diagnosis / relevance vector machine / ensemble empirical mode decomposition(EEMD)

引用本文

导出引用
王波1,2 刘树林1 蒋超1 张宏利1 . 基于量子遗传算法优化RVM的滚动轴承智能故障诊断[J]. 振动与冲击, 2015, 34(17): 207-212
WANG Bo1,2 LIU Shu-lin1 JIANG Chao1 ZHANG Hong-li1. Rolling bearing intelligent fault diagnosis based on RVM optimized by Quantum genetic algorithm[J]. Journal of Vibration and Shock, 2015, 34(17): 207-212

参考文献

 [1] Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of machine learning research, 2001,1(3):211-244.
 [2] Tipping M E. Bayesian inference: An introduction to principles and practice in machine learning[J]. Advanced lectures on machine learning, 2004,3176:41-62.
 [3] 周晓英, 李巍华, 丁康. 基于关联向量机的齿轮故障检测方法研究[J]. 振动与冲击, 2008(6):51-54.                          
     ZHOU Xiao-ying, LI Wei-hua, DING Kang. Gear fault detection based on relevance vector machine[J]. Journal of vibration and shock, 2008(6):51-54.
 [4] Widodo A, Yang B S, Kim E Y, et al. Fault diagnosis of low speed bearing based on acoustic emission signal and multi-class relevance vector machine[J]. Nondestructive testing and evaluation, 2009,24(4):313-328.
 [5] Li N, Liu C, He C, et al. Gear fault detection based on adaptive wavelet packet feature extraction and relevance vector machine[J].Proceedings of the institution of mechanical engineers part C-Journal of mechanical engineering science, 2011,225(C11):2727-2738.
 [6] He C, Liu C, Li Y, et al. Intelligent fault diagnosis of rotating machinery based on multiple relevance vector machines with variance radial basis function kernel[J]. Proceedings of the institution of mechanical engineers part C-Journal of mechanical engineering science, 2011,225(C7):1718-1729.
 [7] 董超, 田联房, 赵慧洁. 遗传关联向量机高光谱影像分类[J]. 上海交通大学学报, 2011(10):1516-1520.
     DONG Chao,TIAN Lian-fang, ZHAO Hui-jie. Hyperspectral Image Classification by Genetic Relevance Vector Machine[J]. Journal of Shanghai Jiaotong University, 2011(10):1516-1520.
 [8] Du W L, Li A S, Ye P F, et al. Fault diagnosis of plunger pump in truck crane based on relevance vector machine with particle swarm optimization algorithm[J]. Shock and vibration, 2013,20(4):781-792.
 [9] 杨俊安, 庄镇泉, 史亮. 多宇宙并行量子遗传算法[J]. 电子学报, 2004(06):923-928.
     YANG Jun-an, ZHUANG Zhen-quan, SHI Liang. Multi-Universe Parallel Quantum Genetic Algorithm[J]. Acta Electronica Sinica, 2004(06):923-928.
[10] Wu Z, Guang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009,01(01):1-41.
[11] 沈长青, 谢伟达, 朱忠奎, 等. 基于EEMD和改进的形态滤波方法的轴承故障诊断研究[J]. 振动与冲击, 2013(2):39-43.
    SHEN Chang-qing, Peter W.Tse, ZHU Zhong-kui, et al. Rolling element bearing fault diagnosis based on EEMD and improved morphological filtering method[J]. Journal of vibration and shock, 2013(2):39-43.
[12] 周智, 朱永生, 张优云, 等. 基于EEMD和共振解调的滚动轴承自适应故障诊断[J]. 振动与冲击, 2013(02):76-80.
    ZHOU Zhi, ZHU Yong-sheng, ZHANG You-yun, et al. Adaptive fault diagnosis of rolling bearings based on EEMD and demodulated resonance[J]. Journal of vibration and shock, 2013(02):76-80.
[13] Yu Y, Yu D J, Cheng J S. A roller bearing fault diagnosis method based on EMD energy entropy and ANN[J]. Journal of sound and vibration, 2006,294(1-2):269-277.

PDF(1462 KB)

603

Accesses

0

Citation

Detail

段落导航
相关文章

/