柔性立管涡激振动响应特性试验研究

高云1,2, 任铁2, 付世晓2,熊友明1,赵勇3

振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 6-11.

PDF(1732 KB)
PDF(1732 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 6-11.
论文

柔性立管涡激振动响应特性试验研究

  • 高云1,2, 任铁2, 付世晓2,熊友明1,赵勇3
作者信息 +

Experimental study on response characteristics of VIV of a flexible riser

  • Gao Yun1,2, Ren tie2, Fu Shi-xiao2,Xiong You-ming1,Zhao Yong3
Author information +
文章历史 +

摘要

本文针对柔性立管进行了试验研究,试验的目的是为了更深入地了解细长柔性立管在水中的涡激振动响应特性。试验在拖曳水池中完成,通过拖车拖动立管从而产生相对来流。通过测试得到的应变数据,基于模态叠加法,便可得到立管的位移响应等参数。试验中针对不同的流速进行了分析,系统地研究了立管的应变、特征频率、无量纲振幅比、锁定区域以及流体力系数等参数。研究结果表明:柔性立管随着流速的增加会出现多阶锁定现象;在高阶锁定区域,振动频率会出现跳跃现象;且随着锁定阶数的增加,幅值呈现下降趋势。

Abstract

Laboratory tests had been conducted on the flexible riser, the aim of our present work is to further improve the understanding of the response performance of VIV for a long, flexible riser in water. The experiment was accomplished in the towing tank and the relative current was simulated by towing the flexible riser in one direction. The displacement can be obtained by the measured strain based on the modal analysis method. The flexible riser in flow with different velocity was analyzed here, and the response parameters such as strain, characteristic frequency, non-dimensional displacement, lock-in region and coefficient of the fluid force were studied. The analysis results show that the characteristics of the synchronization of VIV for a flexible riser is multi order, the vibration frequency jumps abruptly from one natural frequency to another during the high order synchronization region, and the VIV response decreases with the increased order of the synchronization. 

 

关键词

柔性立管 / 试验研究 / 锁定区域 / 特征频率

Key words

Flexible riser / Experimental study / Lock-in region / Characteristic frequency

引用本文

导出引用
高云1,2, 任铁2, 付世晓2,熊友明1,赵勇3. 柔性立管涡激振动响应特性试验研究[J]. 振动与冲击, 2015, 34(17): 6-11
Gao Yun1,2, Ren tie2, Fu Shi-xiao2,Xiong You-ming1,Zhao Yong3. Experimental study on response characteristics of VIV of a flexible riser[J]. Journal of Vibration and Shock, 2015, 34(17): 6-11

参考文献

[1] Blevins, R. D., 2001. Flow-induced vibration, second ed. Krieger Publishing, Inc., Malabar/Florida, USA.
[2] Feng, C. C. 1968. The measurement of vortex-induced effects in flow past a stationary and oscillating circular and D-section cylinders. Master's Thesis, University of British Columbia, Vancouver, B. C., Canada.
[3] Khalak, A., Williamson, C. H. K., 1997. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping. Journal of Fluids and Structures 11, 973-982.
[4] Khalak, A., Williamson, C. H. K., 1997. Investigation of relative effects of mass and damping in vortex-induced vibration of a circular cylinder. Journal of Wind Engineering and Industrial Aerodynamics 69-71, 341-350.
[5] Khalak, A., Williamson, C. H. K., 1999. Motions, forces and motion transitions in vortex-induced vibration at low mass-damping. Journal of Fluids and Structures 13, 813-851.
[6] Govardhan, R., Williamson, C. H. K., 2000. Modes of vortex formation and frequency response of a freely vibrating cylinder. Journal of Fluid Mechanics, 420, 85-130.
[7] Govardhan, R., Williamson, C. H. K., 2002. Resonance forever: existence of a critical mass and an infinite regime of resonance in vortex-induced vibration. Journal of Fluid Mechanics, 473, 147-166.
[8] Govardhan, R., Williamson, C. H. K., 2004. Vortex-induced vibration, Annual Review of Fluid Mechanics, 36, 413-455.
[9] Morse, T. L., Williamson, C. H. K., 2009. Fluid forcing, wake modes, and transitions for a cylinder undergoing controlled oscillations. Journal of Fluids and Structures, 25, 697-712.
[10] Morse, T. L., Williamson, C. H. K., 2009. Prediction of vortex-induced vibration response by employing controlled motion. Journal of Fluid Mechanics, 634, 5-39.
[11] Morse, T. L., Williamson, C. H. K., 2010. Steady, unsteady and transient vortex-induced vibration predicted using controlled motion data. Journal of Fluid Mechanics, 649, 429-451.
[12] Gopalkrishan, R., 1993. Vortex-induced forces on oscillating bluff cylinders. Ph. D. Thesis, MIT, Cambridge, MA, U. S. A.
[13] Vandiver, J. K., Li, L., 2005. User guide for SHEAR7 version 4.2 for vortex-induced vibration response prediction of beams or cables with slowly varying tension in sheared or uniform flow. Department of Ocean Enginerring, MIT, Cambridge, MA, U. S. A.
[14] Sarpkaya, T., 1978. Fluid forces on oscillating cylinders. ASCE Journal of Waterway, Port, Coastal, and Ocean Division 104, 275-290.
[15] Sumer, B. M., Fredse, J. Hydrodynamics around cylindrical structures[M]. World Scientific Publishing Co. Pte. Ltd. Press, 2005, 13-40.
[16] 吴学敏,黄维平. 考虑大变形的大柔性立管涡激振动模型[J].振动与冲击,2013,32(18):21-25.
WU Xue-min,HUANG Wei-ping.A new model for prediction vortex-induced vibration of a long flexible riser with large deformation[J].Journal of Vibration and Shock,2013,32(18):21-25.
[17] 高云, 付世晓, 宋磊建. 柔性立管涡激振动抑制装置试验研究[J], 振动与冲击, 2014, 33(14): 77-83.
GAO Yun, FU Shi-xiao, SONG Lei-jian. Experimental investigation on the suppression device of VIV of a flexible riser [J]. Journal of Vibration and Shock, 2014, 33(14): 77-83.

PDF(1732 KB)

Accesses

Citation

Detail

段落导航
相关文章

/