压电微动平台的定位控制

崔玉国, 朱耀祥, 马剑强, 方凡

振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 63-68.

PDF(1897 KB)
PDF(1897 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 63-68.
论文

压电微动平台的定位控制

  • 崔玉国, 朱耀祥, 马剑强, 方凡
作者信息 +

Position control for piezoelectric micro-positioning stage

  • CUI Yu-guo, ZHU Yao-xiang, MA Jian-qiang, FANG Fan
Author information +
文章历史 +

摘要

为使压电微动平台定位速度快、定位精度高,采用复合控制方法来对其进行定位控制。基于保证模型精度并使精度在整个阈值区间变化尽量均匀的要求,来使阈值最优化,进而建立了压电微动平台的迟滞模型。基于所建平台迟滞模型,设计了其前馈控制器;为抑制平台的超调,在常规数字增量式PID中引入滤波器设计了其反馈控制器;将前馈控制与PID反馈控制相结合,设计了平台的复合控制器。实验结果表明:所建平台迟滞模型仅有7个算子,且均为有效算子,在16.3 μm的最大实测位移下,模型最大误差为0.208 μm;在复合控制作用下,平台达到5 μm目标值的响应时间为0.173 s,虽慢于前馈控制,但明显快于PID反馈控制;在最大位移为17.155 μm的参考输入作用下,若不考虑传感器噪声,平台的定位误差几乎为零。

Abstract

To achieve high positioning speed and high positioning accuracy for a piezoelectric micro-positioning stage, a compound position control method was investigated. A hysteresis model of the micro-positioning stage was established. The threshold value was optimized as far as possible by considering the accuracy of the model and the uniformity of the threshold interval changes. Then a feedforward controller based on the hysteresis model was developed. In order to depress the overshoot of the stage, a PID feedback controller based on the conventional digital incremental PID and a filter was also introduced. Further, a compound controller combining the feedforward controller with the PID feedback controller was developed. The experimental results show that: The developed model has only 7 effective operators. The maximum error is 0.208 μm for a maximum measured displacement of 16.3 μm. For the compound control, the response time of the micro-positioning stage for a 5 μm desired step is 0.173 s, which is slower than that for feedforward control, but significantly faster than that for PID feedback control. Regardless of the sensor noise, the position error of the stage is nearly zero under a maximum reference displacement of 17.155 μm.
 
 

关键词

压电微动平台 / 迟滞模型 / 前馈控制 / PID反馈控制 / 复合控制

Key words

Micro-positioning stage / Hysteresis model / Feedforward control / PID Feedback control / Compound control

引用本文

导出引用
崔玉国, 朱耀祥, 马剑强, 方凡. 压电微动平台的定位控制[J]. 振动与冲击, 2015, 34(17): 63-68
CUI Yu-guo, ZHU Yao-xiang, MA Jian-qiang, FANG Fan. Position control for piezoelectric micro-positioning stage[J]. Journal of Vibration and Shock, 2015, 34(17): 63-68

参考文献

[1] 李庆祥, 王东生, 李玉和. 现代精密仪器设计[M]. 北京:     清华大学出版社, 2004.
LI Q X, WANG D S, LI Y H. Design of modern precision instrument[M]. Beijing: Tsinghua University Press, 2004.
[2] Ge Ping, Jouaneh Musa. Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators[J]. Precision Engineering, 1997, 20(2): 99-111.
[3] 魏燕定. 压电驱动器的非线性模型及其精密定位控制研究[J]. 中国机械工程, 2004, 15(7): 565-568.
WEI Y DING. Study on non-linear model of piezoelectric actuator and accurate positioning control strategy[J]. China Mechanical Engineering, 2004, 15(7): 565-568.
[4] 张新良, 谭永红. 基于动态PREISACH算子的压电陶瓷动态迟滞智能建模[J]. 系统仿真学报, 2009, 21(9): 2682-2686.
ZHANG X L, TAN Y H. Intelligent modeling of rate-dependent hysteresis in piezoelectric actuators based on dynamic preisach operator[J]. Journal of System Simulation, 2009, 1(9): 682-2686.
[5] Liu L, Tan K K, Chen S, et al.. Discrete composite control of piezoelectric actuators for high-speed and precision scanning[J]. Industrial Informatics, IEEE Transactions on, 2013, 9(2): 859-868.
[6] Kuhnen K, J anocha H. Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems[J]. Control and Intelligent Systems, 2001, 29: 74-83.
[7] Janocha H, Pesotski D, Kuhnen K. FPGA-based compensator of hysteretic actuator nonlinearities for highly dynamic applications[J]. IEEE/ASME Transactions on Mechatronics, 2008, 13(1): 112-116.
[8] 张栋, 张承进, 魏强等. 压电微动工作台的动态迟滞模  型[J]. 光学精密工程, 2009, 17(3): 549-556.
ZHANF D, ZHANG C J, WEI Q. Dynamic hysteresis model of piezopositioning stage[J]. Optics and Precision Engineering, 2009, 17(3): 549-556.
[9] Li Z, Aljanaideh O, Rakheja S, et al.. Compensation of play operator–based Prandtl–Ishlinskii hysteresis model using a stop operator with application to piezoelectric actuators[J]. International Journal of Advanced Mechatronic Systems, 2012, 4(1): 25-31.
[10] Jurgen Maas, Thonmas Schulte, Norbert Frohleke. Model-based control for ultrasonic motors[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(2): 165-180.
[11] Chang T, Sun Xue-mei. Analysis and control of monolithic piezoelectric nano-actuator[J]. IEEE transactions on control systems technology, 2001, 9(1): 69-75.
[12] 贾宏光, 吴一辉, 宣明, 等. 一种新的压电驱动器非线性数学模型[J]. 中国机械工程, 2002, 13(11): 929-932.
JIA H G, WU Y H,XUAN M, ea lt.. A new non-linear mathematical model for a PID actuator[J]. China Mechanical Engineering, 2002, 13(11): 929-932.
[13] 崔玉国, 孙宝元, 董维杰, 等. 基于坐标变换的压电陶瓷执行器迟滞非线性模型研究[J]. 大连理工大学学报, 2004, 44(2): 249-254.
CUI YU G, SUN B Y, DONG W J, ea lt.. Study of coordinate transform model for hysteresis nonlinearity in piezoceramic actuator[J]. Journal of Dalian University of Technology, 2004, 44(2): 249-254.
[14] Lin Chih-Jer, Chen Shu-Yin. Evolutionary algorithm based feedforward control for contouring of a biaxial piezo-actuated stage[J]. Mechatronics, 2009, 19(6): 829-839.
[15] Elfizy A T, Bone G M, Elbestawi M A. Design and control of a dual-stage feed drive [J]. International Journal of Machine Tools & Manufacture, 2005, 45(2): 153-165.
[16] Wen C M, Cheng M Y. Development of a recurrent fuzzy CMAC with adjustable input space quantization and self-tuning learning rate for control of a dual-axis piezoelectric actuated micromotion stage[J]. Industrial Electronics, IEEE Transactions on, 2013, 60(11): 5105-5115.
[17] 魏强, 张玉林, 于欣蕾, 等. 扫描隧道显微镜微位移工作台的神经网络PID控制方法研究[J]. 光学精密工程, 2006, 14(3): 422- 427.
WEI Q, ZHANF Y L, YU X L, ea lt.. Study on neural network PID control for micro-displacement stage of Scanning Tunneling Microscope[J]. Optics and Precision Engineering, 2006, 14(3): 422-427.
[18] Seo T W, Kim H S, Kang D S, Kim J. Gain-scheduled robust control of a novel 3-DOF micro parallel positioning platform via a dual stage servo system[J]. Mechatronics, 2008, 18(9): 495-505.
[19] 张栋, 张承进, 魏强,等. 压电工作台的神经网络建模与控制[J]. 光学精密工程, 2012, 20(3): 587-596.
ZHANG D,ZHAND J, WEI Q , ea lt.. Modeling and control of piezo-stage using neural networks[J]. Optics and Precision Engineering, 2012, 20(3): 587-596.
[20] 陈远晟, 裘进浩, 季宏丽, 等. 压电式二维微动工作台的迟滞补偿与解耦控制[J]. 纳米技术与精密工程, 2013, 11(3): 252-260.
CHNE Y S, QIU J H, JI H L, ea lt.. Hysteresis compensation and decoupling control of piezoelectrically driven two-dimensional micro-positioning stage[J]. Nanotechnology and Precision Engineering, 2013, 11(3): 252-260.
[21] 姜晶, 邓宗全, 岳洪浩, 等. 基于光控压电混合驱动悬臂梁独立模态控制[J]. 振动与冲击, 2015, 34(7): 64-70.
JIANG Jing, DENG Zong-quan, YUE Hong-hao, et al. Independent modal control on cantilever beam based on hybrid photovoltaic/piezoelectric actuation mechanism[J]. Journal of Vibration and Shock,2015,34(7):64-70.
[22] 陶永华, 尹怡欣, 葛芦生. 新型PID控制及其应用[M]. 北京: 机械工业出版社, 1998.
TAO Y G, YIN Y X, GE L S.The new PID control and application[M]. Beijing: China machine press, 1998. (in Chinese)
[23] 李勇. 二维并联压电微动平台的控制方法研究[D]. 宁波大学, 2012.
LI Y. Research on control methods of 2-DOF micro-positional stage based on parallel structure [D]. Ningbo University, 2012.

PDF(1897 KB)

Accesses

Citation

Detail

段落导航
相关文章

/