附加自由阻尼梁高频响应的能量有限元方法模型

孔祥杰1,2,陈花玲1,2,祝丹晖1,2,张文博1,2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 94-99.

PDF(1445 KB)
PDF(1445 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (17) : 94-99.
论文

附加自由阻尼梁高频响应的能量有限元方法模型

  • 孔祥杰1,2 , 陈花玲1,2,祝丹晖1,2,张文博1,2
作者信息 +

Energy Finite Element Analysis of High-Frequency Vibration in Beams with Free Layer Damping Treatment

  • KONG Xiang-jie1,2,CHEN Hua-ling1,2,ZHU Dan-hui1,2,ZHANG Wen-bo1,2
Author information +
文章历史 +

摘要

能量有限元方法(EFEA)是一种预示结构高频响应的新方法。为了利用能量有限元方法准确的预示附加阻尼结构的高频响应,将复刚度法与能量有限元的相关理论相结合,同时对现有的能量有限元推导思路进行了大结构阻尼条件下的修正,推导了大阻尼工况下,附加自由阻尼梁结构高频振动响应的能量密度控制方程。同时,通过对阻尼处理交界面处能量转移关系的分析,建立了经过局部附加阻尼处理的梁结构高频响应的能量有限元模型。通过与各自工况下模态解析解的对比,所建立的能量有限元方法模型可以准确的预示大结构阻尼工况下附加阻尼梁的高频响应。

Abstract

Energy Finite Element Analysis (EFEA) is a method developed for high-frequency structural response prediction in recent years. To study the high-frequency vibrational response of the beam structure with free layer damping (FLD) treatment, the governing equation of energy density about the bending vibration of the beam structure with FLD treatment under high damping condition is developed based on the model of equivalent complex flexural stiffness and the theoretical scheme of EFEA. The governing equation is derived with special treatment and modifications for high structural damping. Meanwhile, the EFEA model of beam structure with partial FLD treatment is also developed by studying the energy transfer relationship at the interface of damping treatment. Numerical simulations validated the proposed model through the comparisons with the analytical modal solutions. The results showed that the proposed EFEA model can predict the high-frequency vibrational response of the beam structure with FLD treatment under high damping condition accurately.
 

关键词

能量有限元 / 附加阻尼结构 / 高频响应预示

Key words

 Energy Finite Element Analysis / Free layer damping (FLD) treatment / High-frequency response

引用本文

导出引用
孔祥杰1,2,陈花玲1,2,祝丹晖1,2,张文博1,2. 附加自由阻尼梁高频响应的能量有限元方法模型[J]. 振动与冲击, 2015, 34(17): 94-99
KONG Xiang-jie1,2,CHEN Hua-ling1,2,ZHU Dan-hui1,2,ZHANG Wen-bo1,2. Energy Finite Element Analysis of High-Frequency Vibration in Beams with Free Layer Damping Treatment[J]. Journal of Vibration and Shock, 2015, 34(17): 94-99

参考文献

[1] Oberst H, Becker G, Frankenfeld K. Über die Dämpfung der Biegeschwingungen dünner Bleche durch fest haftende Beläge II[J]. Acta Acustica united with Acustica,1954,4(1):433-444.
[2] Nefske D, Sung S. Power flow finite element analysis of dynamic systems- Basic theory and application to beams[J]. ASME, Transactions, Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1989, 111: 94-100.
[3] Wohlever J, Bernhard RJ. Mechanical energy flow models of rods and beams[J]. Journal of Sound and Vibration, 1992, 153 (1): 1-19.
[4] Bouthier OM, Bernhard RJ. Models of space averaged energetics of plates[J]. AIAA Journal,1992,30(3): 616-623.
[5] Cho PE. Energy flow analysis of coupled structures[D]. United States: Purdue University, 1993.
[6] Zhang WG, Wang AM, Vlahopoulos N, et al. High-frequency vibration analysis of thin elastic plates under heavy fluid loading by an energy finite element formulation[J]. Journal of Sound and Vibration, 2003, 263(1): 21-46.
[7] Wang A, Vlahopoulos N, Buehrle R, et al. Energy finite‐element analysis of the NASA aluminum test‐bed cylinder[J]. The Journal of the Acoustical Society of America, 2006, 119(5): 3389-3389.
[8] Lee S, Vlahopoulos N, Waas A. Analysis of wave propagation in a thin composite cylinder with periodic axial and ring stiffeners using periodic structure theory[J]. Journal of Sound and Vibration,2010,329(16):3304-3318.
[9] Yan XY. Energy finite element analysis developments for high frequency vibration analysis of composite structures[D]. United States: The University of Michigan, 2008.
[10] 游进, 李鸿光, 孟光. 耦合板结构随机能量有限元分析[J]. 振动与冲击, 2009, 28(11): 43-46.
YOU Jin, LI Hong-guang, MENG Guang. Random Energy Finite Element Analysis of Coupled Plate Structures [J]. Journal of vibration and shock, 2009, 28(11): 43-46.
[11] You J, Li HG, Meng G. Validity investigation of random energy flow analysis for beam structures[J]. Shock and Vibration, 2011, 18(1-2): 269-280.
[12] Zhang WB, Chen HL, Zhu DH, Kong XJ. The thermal effects on high-frequency vibration of beams using energy flow analysis[J]. Journal of Sound and Vibration, 2014, 333(9):2588-2600.
[13] Kong XJ, Chen HL, Zhu DH, Zhang WB. Study on the validity region of Energy Finite Element Analysis[J]. Journal of Sound and Vibration, 2014, 333(9):2601-2616.
[14] Cremer L, Heckl M, Petersson BAT. Structure-borne sound: structural vibrations and sound radiation at audio frequencies[M]. Springer, 2005.
[15] Bitsie F. The structural-acoustic energy finite-element method and energy boundary-element method[D]. United States: Purdue University, 1996
[16] Moens I, Vandepitte D, Sas P. A wavelength criterion for the validity of the Energy Finite Element Method for plates[C]// Proceedings of the International Conference on Noise and Vibration Engineering. KU Leuven; 1998, 2001, 2: 599-606.

PDF(1445 KB)

Accesses

Citation

Detail

段落导航
相关文章

/